ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Magnetic Properties of a Monolayer of Mn12 Single Molecule Magnets

207   0   0.0 ( 0 )
 نشر من قبل Zaher Salman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a Si substrate have been investigated using depth-controlled $beta$-detected nuclear magnetic resonance. A low energy beam of spin polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance linewidth varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments. The temperature dependence of the linewidth indicates that the magnetic properties of the Mn12 moments in this low dimensional configuration differ from bulk Mn12.



قيم البحث

اقرأ أيضاً

Magnetization measurements of a molecular clusters Mn12 with a spin ground state of S = 10 show resonance tunneling at avoided energy level crossings. The observed oscillations of the tunnel probability as a function of the magnetic field applied alo ng the hard anisotropy axis are due to topological quantum phase interference of two tunnel paths of opposite windings. Mn12 is therefore the second molecular clusters presenting quantum phase interference.
We present a detailed study of the influence of various interactions on the spin quantum tunneling in a Mn12 wheel molecule. The effects of single-ion and exchange (spin-orbit) anisotropy are first considered, followed by an analysis of the roles pla yed by secondary influences, e.g. disorder, dipolar and hyperfine fields, and magnetoacoustic interactions. Special attention is paid to the role of the antisymmetric Dzyaloshinski-Moriya (DM) interaction. This is done within the framework of a 12-spin microscopic model, and also using simplified dimer and tetramer approximations in which the electronic spins are grouped in 2 or 4 blocks, respectively. If the molecule is inversion symmetric, the DM interaction between the dimer halves must be zero. In an inversion symmetric tetramer, two independent DM vectors are allowed, but no new tunneling transitions are generated by the DM interaction. Experiments on the Mn12 wheel can only be explained if the molecular inversion symmetry is broken, and we explore this in detail using both models, focussing on the asymmetric disposition and rounding of Berry phase minima associated with quantum interference between states of opposite parity. A remarkable behavior exists for the `Berry phase zeroes as a function of the directions of the internal DM vectors and the external transverse field. A rather drastic breaking of the molecular inversion-symmetry is required to explain the experiments; in the tetramer model this requires a reorientation of the DM vectors on one half of the molecule by nearly 180 degrees. This cannot be attributed to sample disorder. These results are of general interest for the quantum dynamics of tunneling spins, and lead to some interesting experimental predictions.
The time-dependent transport through single-molecule magnets coupled to magnetic or non-magnetic electrodes is studied in the framework of the generalized master equation method. We investigate the transient regime induced by the periodic switching o f the source and drain contacts. If the electrodes have opposite magnetizations the quantum turnstile operation allows the stepwise writing of intermediate excited states. In turn, the transient currents provide a way to read these states. Within our approach we take into account both the uniaxial and transverse anisotropy. The latter may induce additional quantum tunneling processes which affect the efficiency of the proposed read-and-write scheme. An equally weighted mixture of molecular spin states can be prepared if one of the electrodes is ferromagnetic.
In this work we study theoretically the coupling of single molecule magnets (SMMs) to a variety of quantum circuits, including microwave resonators with and without constrictions and flux qubits. The main results of this study is that it is possible to achieve strong and ultrastrong coupling regimes between SMM crystals and the superconducting circuit, with strong hints that such a coupling could also be reached for individual molecules close to constrictions. Building on the resulting coupling strengths and the typical coherence times of these molecules (of the order of microseconds), we conclude that SMMs can be used for coherent storage and manipulation of quantum information, either in the context of quantum computing or in quantum simulations. Throughout the work we also discuss in detail the family of molecules that are most suitable for such operations, based not only on the coupling strength, but also on the typical energy gaps and the simplicity with which they can be tuned and oriented. Finally, we also discuss practical advantages of SMMs, such as the possibility to fabricate the SMMs ensembles on the chip through the deposition of small droplets.
We present a new family of exchange biased Single Molecule Magnets in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical a nalysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. See also: W. Wernsdorfer, N. Aliaga-Alcalde, D. Hendrickson, G. Christou, Nature 416 (2002) 406.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا