ترغب بنشر مسار تعليمي؟ اضغط هنا

In-Plane Magnetization Induced Quantum Anomalous Hall Effect in Atomic Crystals of Group-V Elements

73   0   0.0 ( 0 )
 نشر من قبل Zhenhua Qiao
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically demonstrate that the in-plane magnetization induced quantum anomalous Hall effect (QAHE) can be realized in atomic crystal layers of group-V elements with buckled honeycomb lattice. We first construct a general tight-binding Hamiltonian with $sp^3$ orbitals via Slater-Koster two-center approximation, and then numerically show that for weak and strong spin-orbit couplings the systems harbor QAHEs with Chern numbers of $mathcal{C}=pm1$ and $pm2$ , respectively. For the $mathcal{C}=pm1$ phases, we find the critical phase-transition magnetization from a trivial insulator to QAHE can become extremely small by tuning the spin-orbit coupling strength. Although the resulting band gap is small, it can be remarkably enhanced by orders via tilting the magnetization slightly away from the in-plane orientation. For the $mathcal{C}=pm2$ phases, we find that the band gap is large enough for the room-temperature observation. Although the critical magnetization is relatively large, it can be effectively decreased by applying a strain. All these suggest that it is experimentally feasible to realize high-temperature QAHE from in-plane magnetization in atomic crystal layers of group-V elements.

قيم البحث

اقرأ أيضاً

Many striking non-equilibrium phenomena have been discovered or predicted in optically-driven quantum solids, ranging from light-induced superconductivity to Floquet-engineered topological phases. These effects are expected to lead to dramatic change s in electrical transport, but can only be comprehensively characterized or functionalized with a direct interface to electrical devices that operate at ultrafast speeds. Here, we make use of laser-triggered photoconductive switches to measure the ultrafast transport properties of monolayer graphene, driven by a mid-infrared femtosecond pulse of circularly polarized light. The goal of this experiment is to probe the transport signatures of a predicted light-induced topological band structure in graphene, similar to the one originally proposed by Haldane. We report the observation of an anomalous Hall effect in the absence of an applied magnetic field. We also extract quantitative properties of the non-equilibrium state. The dependence of the effect on a gate potential used to tune the Fermi level reveals multiple features that reflect the effective band structure expected from Floquet theory. This includes a ~60 meV wide conductance plateau centered at the Dirac point, where a gap of approximately equal magnitude is expected to open. We also find that when the Fermi level lies within this plateau, the estimated anomalous Hall conductance saturates around ~1.8$pm$0.4 e$^2$/h.
The quantum anomalous Hall effect (QAHE) realizes dissipationless longitudinal resistivity and quantized Hall resistance without the need of an external magnetic field. However, when reducing the device dimensions or increasing the current density, a n abrupt breakdown of the dissipationless state occurs with a relatively small critical current, limiting the applications of the QAHE. We investigate the mechanism of this breakdown by studying multi-terminal devices and identified that the electric field created between opposing chiral edge states lies at the origin. We propose that electric-field-driven percolation of two-dimensional charge puddles in the gapped surface states of compensated topological-insulator films is the most likely cause of the breakdown.
182 - Xiaosong Wu , Yike Hu , Ming Ruan 2009
The observation of the anomalous quantum Hall effect in exfoliated graphene flakes triggered an explosion of interest in graphene. It was however not observed in high quality epitaxial graphene multilayers grown on silicon carbide substrates. The qua ntum Hall effect is shown on epitaxial graphene monolayers that were deliberately grown over substrate steps and subjected to harsh processing procedures, demonstrating the robustness of the epitaxial graphene monolayers and the immunity of their transport properties to temperature, contamination and substrate imperfections. The mobility of the monolayer C-face sample is 19,000 cm^2/Vs. This is an important step towards the realization of epitaxial graphene based electronics.
Even at the lowest accessible temperatures, measurements of the quantum anomalous Hall (QAH) effect have indicated the presence of parasitic dissipative conduction channels. There is no consensus whether parasitic conduction is related to processes i n the bulk or along the edges. Here, we approach this problem by comparing transport measurements of Hall bar and Corbino geometry devices fabricated from Cr-doped (BiSb)$_2$Te$_3$. We identify bulk conduction as the dominant source of dissipation at all values of temperature and in-plane electric field. Furthermore, we observe identical breakdown phenomenology in both geometries, indicating that breakdown of the QAH phase is a bulk process. The methodology developed in this study could be used to identify dissipative conduction mechanisms in new QAH materials, ultimately guiding material development towards realization of the QAH effect at higher temperatures.
The rise of graphene marks the advent of two-dimensional atomic crystals, which have exhibited a cornucopia of intriguing properties, such as the integer and fractional quantum Hall effects, valley Hall effect, charge density waves and superconductiv ity, to name a few. Yet, magnetism, a property of extreme importance in both science and technology, remains elusive. There is a paramount need for magnetic two-dimensional crystals. With the availability of many magnetic materials consisting of van der Waals coupled two-dimensional layers, it thus boils down to the question of how the magnetic order will evolve with reducing thickness. Here we investigate the effect of thickness on the magnetic ordering in nanothick V$_5$S$_8$. We uncover an anomalous Hall effect, by which the magnetic ordering in V$_5$S$_8$ down to 3.2 nm is probed. With decreasing thickness, a breakdown of antiferromagnetism is evident, followed by a spin-glass-like state. For thinnest samples, a weak ferromagnetic ordering emerges. The results not only show an interesting effect of reducing thickness on the magnetic ordering in a potential candidate for magnetic two-dimensional crystals, but demonstrate the anomalous Hall effect as a useful characterization tool for magnetic orderings in two-dimensional systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا