ﻻ يوجد ملخص باللغة العربية
We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter $|J|$ we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.
Motivated by the experiments on the organic compound $(Per)_{2}[Pt(mnt)_{2}]$, we study the ground state of the one-dimensional Kondo lattice model at quarter filling with the density matrix renormalization group method. We show a coupled dimer and b
The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest- and next-nearest-neighbor hopping t_1 and t_2 is explored. We find a region at negative t_2 with fully saturated ferromagnetic ground states that we attribute t
The Kondo-Heinsberg chain is an interesting model of a strongly correlated system which has a broad superconducting state with pair-density wave (PDW) order. Some of us have recently proposed that this PDW state is a symmetry-protected topological (S
We use the density matrix renormalization group method to study the properties of the one-dimensional Kondo-Heisenberg model doped with Kondo holes. We find that the perturbation of the Kondo holes to the local hybridization exhibits spatial oscillat
Parafermions are emergent excitations which generalize Majorana fermions and are potentially relevant to topological quantum computation. Using the concept of Fock parafermions, we present a mapping between lattice $mathbb{Z}_4$ parafermions and latt