ﻻ يوجد ملخص باللغة العربية
The magnetic phase diagram of the quarter-filled generalized Wigner lattice with nearest- and next-nearest-neighbor hopping t_1 and t_2 is explored. We find a region at negative t_2 with fully saturated ferromagnetic ground states that we attribute to kinetic exchange. Such interaction disfavors antiferromagnetism at t_2 <0 and stems from virtual excitations across the charge gap of the Wigner lattice, which is much smaller than the Mott-Hubbard gap proportional to U. Remarkably, we find a strong dependence of the charge structure factor on magnetism even in the limit U to infinity, in contrast to the expectation that charge ordering in the Wigner lattice regime should be well described by spinless fermions. Our results, obtained using the density-matrix renormalization group and exact diagonalization, can be transparently explained by means of an effective low-energy Hamiltonian.
We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both mod
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ o
We consider a system of one-dimensional spinless particles interacting via long-range repulsion. In the limit of strong interactions the system is a Wigner crystal, with excitations analogous to phonons in solids. In a harmonic crystal the phonons do
Electron-electron interactions strongly affect the behavior of low-dimensional systems. In one dimension (1D), arbitrarily weak interactions qualitatively alter the ground state producing a Luttinger liquid (LL) which has now been observed in a numbe