ﻻ يوجد ملخص باللغة العربية
Parafermions are emergent excitations which generalize Majorana fermions and are potentially relevant to topological quantum computation. Using the concept of Fock parafermions, we present a mapping between lattice $mathbb{Z}_4$ parafermions and lattice spin-$1/2$ fermions which preserves the locality of operators with $mathbb{Z}_4$ symmetry. Based on this mapping, we construct an exactly solvable, local, and interacting one-dimensional fermionic Hamiltonian which hosts zero-energy modes obeying parafermionic algebra. We numerically show that this parafermionic phase remains stable in a wide range of parameters, and discuss its signatures in the fermionic spectral function.
We discuss a one-dimensional fermionic model with a generalized $mathbb{Z}_{N}$ even multiplet pairing extending Kitaev $mathbb{Z}_{2}$ chain. The system shares many features with models believed to host localized edge parafermions, the most prominen
We study interaction-induced Mott insulators, and their topological properties in a 1D non-Hermitian strongly-correlated spinful fermionic superlattice system with either nonreciprocal hopping or complex-valued interaction. For the nonreciprocal hopp
A Haldane conjecture is revealed for spin-singlet charge modes in 2N-component fermionic cold atoms loaded into a one-dimensional optical lattice. By means of a low-energy approach and DMRG calculations, we show the emergence of gapless and gapped ph
The physical properties of arbitrary half-integer spins $F = N - 1/2$ fermionic cold atoms trapped in a one-dimensional optical lattice are investigated by means of a low-energy approach. Two different superfluid phases are found for $F ge 3/2$ depen
Using quantum Monte Carlo simulations, we show that density-density and pairing correlation functions of the one-dimensional attractive fermionic Hubbard model in a harmonic confinement potential are characterized by the anomalous dimension $K_rho$ o