ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of plastic deformations in polymers based on elements of general nonlinear theory

199   0   0.0 ( 0 )
 نشر من قبل Sergei Lyuksyutov
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a method for describing plasticity in a broad class of amorphous materials. The method is based on nonlinear (geometric) deformation theory allowing the separation of the plastic deformation from the general deformation tensor. This separation allows an adequate pattern of thermodynamical phenomena for plastic deformations in polymers to be constructed. A parameter describing the stress relaxation rate of the material is introduced within the frame of this approach. Additionally, several experimental configurations to measure this parameter are discussed.


قيم البحث

اقرأ أيضاً

A continuum field theory approach is presented for modeling elastic and plastic deformation, free surfaces and multiple crystal orientations in non-equilibrium processing phenomena. Many basic properties of the model are calculated analytically and n umerical simulations are presented for a number of important applications including, epitaxial growth, material hardness, grain growth, reconstructive phase transitions and crack propagation.
Ditopic bis-(triazole-pyridine)viologens are bidentate ligands that self-assemble into coordination polymers. In such photo-responsive materials, light irradiation initiates photo-induced electron transfer to generate pi-radicals that can self-associ ate to form pi-dimers. This leads to a cascade of events: processes at the supramolecular scale associated with mechanical and structural transition at the macroscopic scale. By tuning the irradiation power and duration, we evidence the formation of aggregates and gels. Using microscopy, we show that the aggregates are dense polydisperse micron size spindle shaped particles which grow in time. Using microscopy and time resolved micro-rheology, we follow the gelation kinetics which leads to a gel characterized by a correlation length of a few microns and a weak elastic modulus. The analysis of the aggregates and the gel states vouch for an arrested phase separation process.
We present a theoretical framework for the linear and nonlinear visco-elastic properties of reversibly crosslinked networks of semiflexible polymers. In contrast to affine models where network strain couples to the polymer end-to-end distance, in our model strain rather serves to locally distort the network structure. This induces bending modes in the polymer filaments, the properties of wich are slaved to the surrounding network structure. Specifically, we investigate the frequency-dependent linear rheology, in particular in combination with crosslink binding/unbinding processes. We also develop schematic extensions to describe the nonlinear response during creep measurements as well as during constant-strainrate ramps.
Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecula r rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulation.
Nature is remarkably adept at using interfaces to build structures, encapsulate reagents, and regulate biological processes. Inspired by Nature, we describe flexible polymer-based ribbons, termed mesoscale polymers (MSPs), to modulate interfacial int eractions with liquid droplets. This produces unprecedented hybrid assemblies in the forms of flagellum-like structures and MSP-wrapped droplets. Successful preparation of these hybrid structures hinges on interfacial interactions and tailored MSP compositions, such as MSPs with domains possessing distinctly different affinity for fluid-fluid interfaces as well as mechanical properties. In situ measurements of MSP-droplet interactions confirm that MSPs possess a negligible bending stiffness, allowing interfacial energy to drive mesoscale assembly. By exploiting these interfacial driving forces, mesoscale polymers are demonstrated as a powerful platform that underpins the preparation of sophisticated hybrid structures in fluids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا