ترغب بنشر مسار تعليمي؟ اضغط هنا

Light-controlled aggregation and gelation of viologen-based coordination polymers

66   0   0.0 ( 0 )
 نشر من قبل Thomas Gibaud
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ditopic bis-(triazole-pyridine)viologens are bidentate ligands that self-assemble into coordination polymers. In such photo-responsive materials, light irradiation initiates photo-induced electron transfer to generate pi-radicals that can self-associate to form pi-dimers. This leads to a cascade of events: processes at the supramolecular scale associated with mechanical and structural transition at the macroscopic scale. By tuning the irradiation power and duration, we evidence the formation of aggregates and gels. Using microscopy, we show that the aggregates are dense polydisperse micron size spindle shaped particles which grow in time. Using microscopy and time resolved micro-rheology, we follow the gelation kinetics which leads to a gel characterized by a correlation length of a few microns and a weak elastic modulus. The analysis of the aggregates and the gel states vouch for an arrested phase separation process.

قيم البحث

اقرأ أيضاً

We present a simple reaction kinetics model to describe the polymer synthesis used by Lusignan et al. (PRE, 60, 5657, 1999) to produce randomly branched polymers in the vulcanization class. Numerical solution of the rate equations gives probabilities for different connections in the final product, which we use to generate a numerical ensemble of representative molecules. All structural quantities probed by Lusignan et al. are in quantitative agreement with our results for the entire range of molecular weights considered. However, with detailed topological information available in our calculations, our estimate of the `rheologically relevant linear segment length is smaller than that estimated by them. We use a numerical method based on tube model of polymer melts to calculate the rheological properties of such molecules. Results are in good agreement with experiment, except that in the case of the largest molecular weight samples our estimate of the zero-shear viscosity is significantly lower than the experimental findings. Using acid concentration as an indicator for closeness to the gelation transition, we show that the high-molecular-weight polymers considered are at the limit of mean-field behavior - which possibly is the reason for this disagreement. For a truly mean-field gelation class of model polymers, we numerically calculate the rheological properties for a range of segment lengths. Our calculations show that the tube theory with dynamical dilation predicts that, very close to the gelation limit, contribution to viscosity for this class of polymers is dominated by the contribution from constraint-release Rouse motion and the final viscosity exponent approaches Rouse-like value.
Star polymers with magnetically functionalized end groups are presented as a novel polymeric system whose morphology, self-aggregation, and orientation can easily be tuned by exposing these macromolecules simultaneously to an external magnetic field and to shear forces. Our investigations are based on a specialized simulation technique which faithfully takes into account the hydrodynamic interactions of the surrounding, Newtonian solvent. We find that the combination of magnetic field (including both strength and direction) and shear rate controls the mean number of magnetic clusters, which in turn is largely responsible for the static and dynamic behavior. While some properties are similar to comparable non-magnetic star polymers, others exhibit novel phenomena; examples of the latter include the breakup and reorganization of the clusters beyond a critical shear rate, and a strong dependence of the efficiency with which shear rate is translated into whole-body rotations on the direction of the magnetic field.
We report a method for describing plasticity in a broad class of amorphous materials. The method is based on nonlinear (geometric) deformation theory allowing the separation of the plastic deformation from the general deformation tensor. This separat ion allows an adequate pattern of thermodynamical phenomena for plastic deformations in polymers to be constructed. A parameter describing the stress relaxation rate of the material is introduced within the frame of this approach. Additionally, several experimental configurations to measure this parameter are discussed.
Surface segregation of the low-molecular weight component in a polymeric mixture leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer-polymer and oligomer-gel systems f ollowing a temperature quench. We compute equilibrium and time varying migrant density profiles and wetting layer thickness using coarse grained molecular dynamics and mesoscale hydrodynamics simulations to demonstrate that surface migration in oligomer-gel systems is significantly reduced due to network elasticity. Further, phase separation processes are significantly slowed in gels, modifying the Lifshitz-Slyozov-Wagner (LSW) law $ell(tau) sim tau^{1/3}$. Our work allows for rational design of polymer/gel-oligomer mixtures with predictable surface segregation characteristics.
Nature is remarkably adept at using interfaces to build structures, encapsulate reagents, and regulate biological processes. Inspired by Nature, we describe flexible polymer-based ribbons, termed mesoscale polymers (MSPs), to modulate interfacial int eractions with liquid droplets. This produces unprecedented hybrid assemblies in the forms of flagellum-like structures and MSP-wrapped droplets. Successful preparation of these hybrid structures hinges on interfacial interactions and tailored MSP compositions, such as MSPs with domains possessing distinctly different affinity for fluid-fluid interfaces as well as mechanical properties. In situ measurements of MSP-droplet interactions confirm that MSPs possess a negligible bending stiffness, allowing interfacial energy to drive mesoscale assembly. By exploiting these interfacial driving forces, mesoscale polymers are demonstrated as a powerful platform that underpins the preparation of sophisticated hybrid structures in fluids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا