ﻻ يوجد ملخص باللغة العربية
Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulation.
We analyze multiple new issues concerning activated relaxation in glassy hard sphere fluids and molecular and polymer liquids based on the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory. By invoking a high temperature reference sta
We develop the elastically collective nonlinear Langevin equation theory of bulk relaxation of glass-forming liquids to investigate molecular mobility under compression conditions. The applied pressure restricts more molecular motion and therefore si
We theoretically investigate structural relaxation and activated diffusion of glass-forming liquids at different pressures using both the Elastically Collective Nonlinear Langevin Equation (ECNLE) theory and molecular dynamics (MD) simulation. An ext
Magneto-rheological elastomers (MREs) are functional materials that can be actuated by applying an external magnetic field. MREs comprise a composite of hard magnetic particles dispersed into a nonmagnetic elastomeric matrix. By applying a strong mag
We explore quantitative descriptors that herald when a many-particle system in $d$-dimensional Euclidean space $mathbb{R}^d$ approaches a hyperuniform state as a function of the relevant control parameter. We establish quantitative criteria to ascert