ﻻ يوجد ملخص باللغة العربية
The ability of an insulating solid to conduct heat is rarely effected by the application of a magnetic field. We have found, however, that the low temperature heat conduction of some solids increases by more than a factor of two with the application of a modest magnetic field. The effect occurs in low-dimensional magnetically ordered materials when a small gap, delta, in the acoustic magnon (spin wave) spectra is closed using a magnetic field H > delta/gmu_B. Since all magnetically ordered materials must have a gap in the magnon spectra for magnons with k = 0, this may be a very general effect. Extra heat is carried through the solid only when the magentic field exceeds the critical value (H > delta/gmu_B). At this critical field the tiny atomic magnets in the solid abruptly change the direction they point which results in more heat flowing through the material. The magnetic field thus acts as a heat switch. We have observed this effect in three quite different magnetically ordered materials: K_2V_3O_8, Nd_2CuO_4 and Pr_2CuO_4. Several possible explanations for these effects will be discussed.
The spin valve effect is a quantum phenomenon so far only realized in multilayer thin films or heterostructures. Here we report a strong spin valve effect existing in bulk single crystals of Ca3(Ru1-xCrx)2O7 having an anisotropic, bilayered crystal s
Magnetism arising from coupled spin and spatial degrees of freedom underlies the properties of a broad array of physical systems. We study here the interplay between correlations in spin and space for the quantum compass model in a finite external fi
Recent experimental measurements of magnetoresistance in dual spin valves [A. Aziz et al., Phys. Rev. Lett. 103, 237203 (2009)] reveal some nonlinear features of transport, which have not been observed in other systems. We propose a phenomenological
We present a study of the effects of inelastic scattering on the transport properties of various nanoscale devices, namely H$_2$ molecules sandwiched between Pt contacts, and a spin-valve made by an organic molecule attached to model half-metal ferro
Longitudinal spin Seebeck effect has been investigated for an uniaxial antiferromagnetic insulator Cr2O3, characterized by a spin-flop transition under magnetic field along the c-axis. We have found that temperature gradient applied normal to Cr2O3/P