ترغب بنشر مسار تعليمي؟ اضغط هنا

Inelastic transport in molecular spin valves

72   0   0.0 ( 0 )
 نشر من قبل Stefano Sanvito
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the effects of inelastic scattering on the transport properties of various nanoscale devices, namely H$_2$ molecules sandwiched between Pt contacts, and a spin-valve made by an organic molecule attached to model half-metal ferromagnetic current/voltage probes. In both cases we use a tight-binding Su-Schrieffer-Heeger Hamiltonian and the inelastic effects are treated with a multi-channel method, including Pauli exclusion principle. In the case of the H$_2$ molecule, we find that inelastic backscattering is responsible for the drop of the differential conductance at biases larger than the excitation energy of the lower of the molecular phonon modes. In the case of the spin-valve, we investigate the different spin-currents and the magnetoresistance as a function of the position of the Fermi level with respect to the spin-polarized band edges. In general inelastic scattering reduces the spin-polarization of the current and consequently the magnetoresistance.

قيم البحث

اقرأ أيضاً

The charge and spin diffusion equations taking into account spin-flip and spin-transfer torque were numerically solved using a finite element method in complex non-collinear geometry with strongly inhomogeneous current flow. As an illustration, spin- dependent transport through a non-magnetic nanoconstriction separating two magnetic layers was investigated. Unexpected results such as vortices of spin-currents in the vicinity of the nanoconstriction were obtained. The angular variations of magnetoresistance and spin-transfer torque are strongly influenced by the structure geometry.
We investigate effects of spin-orbit splitting on electronic transport in a spin valve consisting of a large quantum dot defined on a two-dimensional electron gas with two ferromagnetic contacts. In the presence of both structure inversion asymmetry (SIA) and bulk inversion asymmetry (BIA) a giant anisotropy in the spin-relaxation times has been predicted. We show how such an anisotropy affects the electronic transport properties such as the angular magnetoresistance and the spin-transfer torque. Counterintuitively, anisotropic spin-relaxation processes sometimes enhance the spin accumulation.
Two dimensional (2D) materials provide a unique platform for spintronics and valleytronics due to the ability to combine vastly different functionalities into one vertically-stacked heterostructure, where the strengths of each of the constituent mate rials can compensate for the weaknesses of the others. Graphene has been demonstrated to be an exceptional material for spin transport at room temperature, however it lacks a coupling of the spin and optical degrees of freedom. In contrast, spin/valley polarization can be efficiently generated in monolayer transition metal dichalcogenides (TMD) such as MoS2 via absorption of circularly-polarized photons, but lateral spin or valley transport has not been realized at room temperature. In this letter, we fabricate monolayer MoS2/few-layer graphene hybrid spin valves and demonstrate, for the first time, the opto-valleytronic spin injection across a TMD/graphene interface. We observe that the magnitude and direction of spin polarization is controlled by both helicity and photon energy. In addition, Hanle spin precession measurements confirm optical spin injection, spin transport, and electrical detection up to room temperature. Finally, analysis by a one-dimensional drift-diffusion model quantifies the optically injected spin current and the spin transport parameters. Our results demonstrate a 2D spintronic/valleytronic system that achieves optical spin injection and lateral spin transport at room temperature in a single device, which paves the way for multifunctional 2D spintronic devices for memory and logic applications.
We demonstrate first measurements of successful spin generation in crystalline Co$_2$FeSi/MgO/GaAs hybrid structures grown by molecular-beam epitaxy (MBE), with different MgO interlayer thicknesses. Using non-local spin valve and non-local Hanle meas urement configurations, we determine spin lifetimes of ${tau approx 100}$~ns and spin diffusion lengths of ${lambda approx 5.6}$~$mu$m for different MgO layer thicknesses proving the high quality of the GaAs transport channel. For an optimized MgO layer thickness, the bias dependence of the spin valve signals indicates the verification of the half-metallic gap (upper edge) of Co$_2$FeSi in accordance with first principle calculations. In addition to that, spin generation efficiencies up to 18$%$ reveal the high potential of MgO interlayers at the Co$_2$FeSi/GaAs interface for further device applications.
Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolv e coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N{e}el-vector-tunneling description of the spin dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا