ﻻ يوجد ملخص باللغة العربية
Longitudinal spin Seebeck effect has been investigated for an uniaxial antiferromagnetic insulator Cr2O3, characterized by a spin-flop transition under magnetic field along the c-axis. We have found that temperature gradient applied normal to Cr2O3/Pt interface induces inverse spin Hall voltage of spin current origin in Pt, whose magnitude turns out to be always proportional to magnetization in Cr2O3. The observed voltage shows significant enhancement for the lower temperature region, which can be ascribed to the phonon-drag effect on the relevant spin excitations. The above results establish that antiferromagnetic spin waves with high frequency above 100 GHz can be an effective carrier of spin current.
We report the experimental observation of longitudinal spin Seebeck effect in a multiferroic helimagnet Ba0.5Sr1.5Zn2Fe12O22. Temperature gradient applied normal to Ba0.5Sr1.5Zn2Fe12O22/Pt interface generates inverse spin Hall voltage of spin current
The application of weak electric fields (<~ 100 V/cm) is found to dramatically enhance the lattice thermal conductivity of the antiferromagnetic (AF) insulator CaMnO(3) over a broad range of temperature about the Neel ordering point (125 K). The effe
We report on magnetic resonance studies within the magnetically ordered phase of the quasi-1D antiferromagnet LiCuVO_4. Our studies reveal a spin reorientational transition at a magnetic field H_c1 ~ 25 kOe applied within the crystallographical (ab)-
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magn
A clear thermal Hall signal ($kappa_{xy}$) was observed in the spin liquid phase of the $S=1/2$ kagome antiferromagnet Ca kapellasite (CaCu$_3$(OH)$_6$Cl$_2cdot 0.6$H$_2$O). We found that $kappa_{xy}$ is well reproduced, both qualitatively and quanti