ﻻ يوجد ملخص باللغة العربية
Quantum systems are prone to decoherence due to both intrinsic interactions as well as random fluctuations from the environment. Using the Pechukas-Yukawa formalism, we investigate the influence of noise on the dynamics of an adiabatically evolving Hamiltonian which can describe a quantum computer. Under this description, the level dynamics of a parametrically perturbed quantum Hamiltonian are mapped to the dynamics of 1D classical gas. We show that our framework coincides with the results of the classical Landau-Zener transitions upon linearisation. Furthermore, we determine the effects of external noise on the level dynamics and its impact on Landau-Zener transitions.
We analyze the influence of classical Gaussian noise on Landau-Zener transitions during a two-level crossing in a time-dependent regular external field. Transition probabilities and coherence factors become random due to the noise. We calculate their
We consider the evolution of a quantum state of a Hamiltonian which is parametrically perturbed via a term proportional to the adiabatic parameter lambda (t). Starting with the Pechukas-Yukawa mapping of the energy eigenvalues evolution on a generali
We explore the possibility of dynamical quantum phase transitions (DQPTs) occurring during the temporal evolution of a quenched transverse field Ising chain coupled to a particle loss type of bath (local in Jordan-Wigner fermion space) using t
We report an experimental measurement of Landau-Zener transitions on an individual flux qubit within a multi-qubit superconducting chip designed for adiabatic quantum computation. The method used isolates a single qubit, tunes its tunneling amplitude
We study Landau-Zener transitions in a fermionic dissipative environment where a two-level (up and down states) system is coupled to two metallic leads kept with different chemical potentials at zero temperature. The dynamics of the system is simulat