ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of macroscopic Landau-Zener transitions in a superconducting device

264   0   0.0 ( 0 )
 نشر من قبل Alec Maassen van den Brink
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A two-level system traversing a level anticrossing has a small probability to make a so-called Landau-Zener (LZ) transition between its energy bands, in deviation from simple adiabatic evolution. This effect takes on renewed relevance due to the observation of quantum coherence in superconducting qubits (macroscopic Schrodinger cat devices). We report an observation of LZ transitions in an Al three-junction qubit coupled to a Nb resonant tank circuit.



قيم البحث

اقرأ أيضاً

We study the dynamic behaviour of a quantum two-level system with periodically varying parameters by solving the master equation for the density matrix. Two limiting cases are considered: multiphoton Rabi oscillations and Landau-Zener transitions. Th e approach is applied to the description of the dynamics of superconducting qubits. In particular, the case of the interferometer-type charge qubit with periodically varying parameters (gate voltage or magnetic flux) is investigated. The time-averaged energy level populations are calculated as funtions of the qubits control parameters.
Frequency instability of superconducting resonators and qubits leads to dephasing and time-varying energy-loss and hinders quantum-processor tune-up. Its main source is dielectric noise originating in surface oxides. Thorough noise studies are needed in order to develop a comprehensive understanding and mitigation strategy of these fluctuations. Here we use a frequency-locked loop to track the resonant-frequency jitter of three different resonator types---one niobium-nitride superinductor, one aluminium coplanar waveguide, and one aluminium cavity---and we observe strikingly similar random-telegraph-signal fluctuations. At low microwave drive power, the resonators exhibit multiple, unstable frequency positions, which for increasing power coalesce into one frequency due to motional narrowing caused by sympathetic driving of individual two-level-system defects by the resonator. In all three devices we probe a dominant fluctuator, finding that its amplitude saturates with increasing drive power, but its characteristic switching rate follows the power-law dependence of quasiclassical Landau-Zener transitions.
61 - Ming Gong , Yu Zhou , Dong Lan 2016
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the system through the avoided energy-level crossing by sweeping the avoided cro ssing. A double-passage chirp produces Landau-Zener-Stuckelberg-Majorana interference that agree well with the numerical results. Our method is fully applicable to other quantum systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.
285 - J. Johansson , S. Saito , T. Meno 2005
We have observed the coherent exchange of a single energy quantum between a flux qubit and a superconducting LC circuit acting as a quantum harmonic oscillator. The exchange of an energy quantum is known as the vacuum Rabi oscillations: the qubit is oscillating between the excited state and the ground state and the oscillator between the vacuum state and the first excited state. We have also obtained evidence of level quantization of the LC circuit by observing the change in the oscillation frequency when the LC circuit was not initially in the vacuum state.
57 - Nir Gavish , Oded Kenneth , 2020
We study the Ginzburg-Landau equations of super-conductivity describing the experimental setup of a Stiffnessometer device. In particular, we consider the nonlinear regime which reveals the impact of the superconductive critical current on the Stiffn essometer signal. As expected, we find that at high flux regimes, superconductivity is destroyed in parts of the superconductive regime. Surprisingly, however, we find that the superconductivity does not gradually decay to zero as flux increases, but rather the branch of solutions undergoes branch folding. We use asymptotic analysis to characterize the solutions at the numerous parameter regimes in which they exist. An immediate application of the work is an extension of the regime in which experimental measurements of the Stiffnessometer device can be interpreted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا