ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependence of electron transport through a quantum shuttle

71   0   0.0 ( 0 )
 نشر من قبل Lev Mourokh
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze electron transport through a quantum shuttle for the applied voltage below the instability threshold. We obtain current-voltage characteristics of this system and show that at low temperature they exhibit pronounced steps. The temperature dependence of the current is calculated in the range from 2K to 300K and it demonstrates a wide variety of behavior - from 1/T decreasing to an exponential growth - depending on how deep the shuttle is in quantum regime. The results obtained are compared to experimental data on electron transport through long molecules.



قيم البحث

اقرأ أيضاً

The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an a brupt decrease at the metamagnetic transition point, $T = T_m$ between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for $T geq 0$ K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of $T_m$, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement.
We show that resonant electron transport in semiconductor superlattices with an applied electric and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction electron temperature increases from 4.2 K to room tempe rature and beyond. It has previously been demonstrated that at certain critical field parameters, the semiclassical trajectories of electrons in the lowest miniband of the superlattice change abruptly from fully localised to completely unbounded. The unbounded electron orbits propagate through intricate web patterns, known as stochastic webs, in phase space, which act as conduction channels for the electrons and produce a series of resonant peaks in the electron drift velocity versus electric field curves. Here, we show that increasing the lattice temperature strengthens these resonant peaks due to a subtle interplay between thermal population of the conduction channels and transport along them. This enhances both the electron drift velocity and the influence of the stochastic webs on the current-voltage characteristics, which we calculate by making self-consistent solutions of the coupled electron transport and Poisson equations throughout the superlattice. These solutions reveal that increasing the temperature also transforms the collective electron dynamics by changing both the threshold voltage required for the onset of self-sustained current oscillations, produced by propagating charge domains, and the oscillation frequency.
Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasi-particles such as electrons and magnons, or by macroscop ic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among non-magnetic metals, ferromagnetic and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator and a non-magnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.
Contents: (1) Model of a lateral quantum dot system (2) Thermally-activated conduction: onset of the Coulomb blockade oscillations and Coulomb blockade peaks at low temperature (3) Activationless transport through a blockaded quantum dot: inela stic and elastic co-tunneling (4) Kondo regime in transport through a quantum dot: effective low-energy Hamiltonian; linear response; weak coupling regime; strong coupling regime; beyond linear response; splitting of the Kondo peak in a magnetic field; Kondo effect in quantum dots with large spin.
Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric contr ol of spin-polarization at ferromagnet (FM)/ferroelectric organic (FE-Org) interface by electrically switching the ferroelectric polarization of the FE-Org has been recently realized. However, there is still a lack of understanding of the transport properties in OMFTJs, especially the interplay between the ferroelectric domain structure in the organic barrier and the spin-polarized electron tunneling through the barrier. Here, we report on a systematic study of the temperature dependent transport behavior in La0.6Sr0.4MnO3/PVDF/Co OMFTJs. It is found that the thermal fluctuation of the ferroelectric domains plays an important role on the transport properties. When T>120K, the opposite temperature dependence of resistance for in up and down ferroelectric polarization states results in a rapid diminishing of tunneling electroresistance (TER). These results contribute to the understanding of the transport properties for designing high performance OMFTJs for memristor and spintronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا