ﻻ يوجد ملخص باللغة العربية
We analyze electron transport through a quantum shuttle for the applied voltage below the instability threshold. We obtain current-voltage characteristics of this system and show that at low temperature they exhibit pronounced steps. The temperature dependence of the current is calculated in the range from 2K to 300K and it demonstrates a wide variety of behavior - from 1/T decreasing to an exponential growth - depending on how deep the shuttle is in quantum regime. The results obtained are compared to experimental data on electron transport through long molecules.
The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an a
We show that resonant electron transport in semiconductor superlattices with an applied electric and tilted magnetic field can, surprisingly, become more pronounced as the lattice and conduction electron temperature increases from 4.2 K to room tempe
Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasi-particles such as electrons and magnons, or by macroscop
Contents: (1) Model of a lateral quantum dot system (2) Thermally-activated conduction: onset of the Coulomb blockade oscillations and Coulomb blockade peaks at low temperature (3) Activationless transport through a blockaded quantum dot: inela
Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric contr