ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature susceptibility in electron doped Ca1-xYxMnO3: Double Exchange vs Superexchange

73   0   0.0 ( 0 )
 نشر من قبل Horacio Aliaga
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of the magnetic properties of the electron doped manganites Ca1-xYxMnO3 (for 0<=x<=0.25) in the paramagnetic regime. For the less doped samples (x<=0.1) the magnetic susceptibility, c(T), follows a Curie-Weiss (CW) law only for T > 450 K and, below this temperature, c^-1(T) shows a ferrimagnetic-like curvature. We approached the discussion of these results in terms of a simple mean-field model where double exchange, approximated by a ferromagnetic Heisenberg-like interaction between Mn3+ and Mn4+ ions, competes with classical superexchange. For higher levels of doping (x>=0.15), the CW behaviour is observed down to the magnetic ordering temperature (Tmo) and a better description of c(T) was obtained by assuming full delocalization of the eg electrons. In order to explore the degree of delocalization as a function of T and x, we analyzed the problem through Montecarlo simulations. Within this picture we found that at high T the electrons doped are completely delocalized but, when Tmo is approached, they form magnetic polarons of large spin that cause the observed curvature in c^-1(T) for x<=0.1.

قيم البحث

اقرأ أيضاً

We have studied structural, magnetic and transport properties as a function of temperature and magnetic field in the electron doped manganite YxCa1-xMnO3, for 0<x<0.25. We found that in the paramagnetic regime, the magnetic susceptibility, chi, devia tes substantially from a Curie-Weiss law for x>0. With a simple model where antiferromagnetic (AF) superexchange and ferromagnetic (FM) double exchange (DE) compete, we fit the experimental chi(x, T) obtaining parameter values which indicate that the FM-DE interaction is about twice as intense as the AF interaction. In the ordered phase, the H-dependence of the magnetization M(x,T) is explained in terms of magnetic polarons. We propose that the displacement of the eg electrons (in the G-type AF background) causes the alignement of the polaron with H. Signatures of polaronic behavior were also found in the x and T dependence of the electric resistivity.
The high-temperature ferromagnet MnBi continues to receive attention as a candidate to replace rare-earth-containing permanent magnets in applications above room temperature. This is due to a high Curie temperature, large magnetic moments, and a coer civity that increases with temperature. The synthesis of MnBi also allows for crystals that are free of interstitial Mn, enabling more direct access to the key interactions underlying the physical properties of binary Mn-based ferromagnets. In this work, we use inelastic neutron scattering to measure the spin waves of MnBi in order to characterize the magnetic exchange at low temperature. Consistent with the spin reorientation that occurs below 140 K, we do not observe a spin gap in this system above our experimental resolution. A Heisenberg model was fit to the spin wave data in order to characterize the long-range nature of the exchange. It was found that interactions up to sixth nearest neighbor are required to fully parameterize the spin waves. Surprisingly, the nearest-neighbor term is antiferromagnetic, and the realization of a ferromagnetic ground state relies on the more numerous ferromagnetic terms beyond nearest neighbor, suggesting that the ferromagnetic ground state arises as a consequence of the long-ranged interactions in the system.
The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magneti c and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.
We show for the system La1-xCexCoO3 (0.1 <= x <= 0.4) that it is possible to synthesize electron-doped cobaltites by the growth of epitaxial thin films. For La1-xCexCoO3, ferromagnetic order is observed within the entire doping range (with the maximu m of the Curie temperature, Tc, at x ca. 0.3), resulting in a magnetic phase diagram similar to that of hole-doped lanthanum cobaltites. The measured spin values strongly suggest an intermediate-spin state of the Co ions which has been also found in the hole-doped system. In contrast to the hole-doped material, however, where Tc is well above 200 K, we observe a strong suppression of the maximum Tc to about 22 K. This is likely to be caused by a considerable decrease of the Co3d - O2p hybridization. The observed intriguing magnetic properties are in agreement with previously reported theoretical results.
Polycrystalline samples of double perovskites Ba2BOsO6 (B = Sc, Y, In) were synthesized by solid state reactions. They adopt the cubic double perovskite structures (space group, Fm-3m) with ordered B and Os arrangements. Ba2BOsO6 (B = Sc, Y, In) show antiferromagnetic transitions at 93 K, 69 K, and 28 K, respectively. The Weiss-temperatures are -590 K for Ba2ScOsO6, -571 K for Ba2YOsO6, and -155 K for Ba2InOsO6. Sc3+ and Y3+ have the open-shell d0 electronic configuration, while In3+ has the closed-shell d10. This indicates that a d0 B-type cation induces stronger overall magnetic exchange interactions in comparison to a d10. Comparison of Ba2BOsO6 (B = Sc, Y, In) to their Sr and Ca analogues shows that the structural distortions weaken the overall magnetic exchange interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا