ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature ferromagnetism of Li-doped vanadium oxide nanotubes

114   0   0.0 ( 0 )
 نشر من قبل Vladislav Kataev
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.



قيم البحث

اقرأ أيضاً

61 - M. Fix , A. Jesche , S. G. Jantz 2017
We report on isothermal magnetization, Mossbauer spectroscopy, and magnetostriction as well as temperature-dependent alternating-current (ac) susceptibility, specific heat, and thermal expansion of single crystalline and polycrstalline Li$_2$(Li$_{1- x}$Fe$_x$)N with $x = 0$ and $x approx 0.30$. Magnetic hysteresis emerges at temperatures below $T approx 50,$K with coercivity fields of up to $mu_0H = 11.6,$T at $T = 2,$K and magnetic anisotropy energies of $310,$K ($27,$meV). The ac susceptibility is strongly frequency dependent ($f,=,10$--$10,000,$Hz) and reveals an effective energy barrier for spin reversal of $Delta E approx 1100,$K. The relaxation times follow Arrhenius behavior for $T > 25,$K. For $T < 10,$K, however, the relaxation times of $tau approx 10^{10},$s are only weakly temperature-dependent indicating the relevance of a quantum tunneling process instead of thermal excitations. The magnetic entropy amounts to more than $25,$J mol$^{-1}_{rm Fe},$K$^{-1}$ which significantly exceeds $R$ln2, the value expected for the entropy of a ground state doublet. Thermal expansion and magnetostriction indicate a weak magneto-elastic coupling in accordance with slow relaxation of the magnetization. The classification of Li$_2$(Li$_{1-x}$Fe$_x$)N as ferromagnet is stressed and contrasted with highly anisotropic and slowly relaxing paramagnetic behavior.
Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted m agnetic oxide, 6H-BaTiO$_{3-delta}$, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic property of this material, despite its unusual dependence on doping concentration and processing conditions. However, the here reported combination of bulk magnetization and complementary in-depth local-probe electron spin resonance and muon spin relaxation measurements, challenges this conjecture. While a ferromagnetic transition occurs around 700 K, it does so only in additionally annealed samples and is accompanied by an extremely small average value of the ordered magnetic moment. Furthermore, several additional magnetic instabilities are detected at lower temperatures. These coincide with electronic instabilities of the Fe-doped 3C-BaTiO$_{3-delta}$ pseudocubic polymorph. Moreover, the distribution of iron dopants with frozen magnetic moments is found to be non-uniform. Our results demonstrate that the intricate static magnetism of the hexagonal phase is not intrinsic, but rather stems from sparse strain-induced pseudocubic regions. We point out the vital role of internal strain in establishing defect ferromagnetism in systems with competing structural phases.
The layers of a high-temperature novel GaAs:Fe diluted magnetic semiconductor (DMS) with an average Fe content up to 20 at. % were grown on (001) i-GaAs substrates using a pulsed laser deposition in a vacuum. The transmission electron microscopy (TEM ) and energy-dispersive X-ray spectroscopy investigations revealed that the conductive layers obtained at 180 and 200 C are epitaxial, do not contain any second-phase inclusions, but contain the Fe-enriched columnar regions of overlapped microtwins. The TEM investigations of the non-conductive layer obtained at 250 C revealed the embedded coherent Fe-rich clusters of GaAs:Fe DMS. The X-ray photoelectron spectroscopy investigations showed that Fe atoms form chemical bonds with Ga and As atoms with almost equal probability and thus the comparable number of Fe atoms substitute on Ga and As sites. The n-type conductivity of the obtained conductive GaAs:Fe layers is apparently associated with electron transport in a Fe acceptor impurity band within the GaAs band gap. A hysteretic negative magnetoresistance was observed in the conductive layers up to room temperature. Magnetoresistance measurements point to the out-of-plane magnetic anisotropy of the conductive GaAs:Fe layers related to the presence of the columnar regions. The studies of the magnetic circular dichroism confirm that the layers obtained at 180, 200 and 250 C are intrinsic ferromagnetic semiconductors and the Curie point can reach up to at least room temperature in case of the conductive layer obtained at 200 C. It was suggested that in heavily Fe-doped GaAs layers the ferromagnetism is related to the Zener double exchange between Fe atoms with different valence states via an intermediate As and Ga atom.
Magnetic semiconductors have attracted interest because of the question of how a magnetic metal can be derived from a paramagnetic insulator. Here our approach is to carrier dope insulating FeSi and we show that the magnetic half-metal which emerges has unprecedented optical properties, unlike those of other low carrier density magnetic metals. All traces of the semiconducting gap of FeSi are obliterated and the material is unique in being less reflective in the ferromagnetic than in the paramagnetic state, corresponding to larger rather than smaller electron scattering in the ordered phase.
The surfaces generated by cleaving non-polar, two-dimensional oxides are often considered to be perfect or ideal. However, single particle spectroscopies on Sr2RuO4, an archetypal non-polar two dimensional oxide, show significant cleavage temperature dependence. We demonstrate that this is not a consequence of the intrinsic characteristics of the surface: lattice parameters and symmetries, step heights, atom positions, or density of states. Instead, we find a marked increase in the density of defects at the mesoscopic scale with increased cleave temperature. The potential generality of these defects to oxide surfaces may have broad consequences to interfacial control and the interpretation of surface sensitive measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا