ﻻ يوجد ملخص باللغة العربية
We discuss the elementary vortex pinning in type-II superconductors in connection with the Andersons theorem for nonmagnetic impurities. We address the following two issues. One is an enhancement of the vortex pinning energy in the unconventional superconductors. This enhancement comes from the pair-breaking effect of a nonmagnetic defect as the pinning center far away from the vortex core (i.e., the pair-breaking effect due to the non-applicability of the Andersons theorem in the unconventional superconductors). The other is an effect of the chirality on the vortex pinning energy in a chiral p-wave superconductor. The vortex pinning energy depends on the chirality. This is related to the cancellation of the angular momentum between the vorticity and chirality in a chiral p-wave vortex core, resulting in local applicability of the Andersons theorem (or local recovery of the Andersons theorem) inside the vortex core.
In order to incorporate spatial inhomogeneity due to nonmagnetic impurities, Anderson [1] proposed a BCS-type theory in which single-particle states in such an inhomogeneous system are used. We examine Andersons proposal, in comparison with the Bogol
A well-known result in unconventional superconductivity is the fragility of nodal superconductors against nonmagnetic impurities. Despite this common wisdom, Bi$_2$Se$_3$-based topological superconductors have recently displayed unusual robustness ag
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide
We studied thermal and dynamic history effects in the vortex lattice (VL) near the order-disorder transition in clean NbSe$_2$ single crystals. Comparing the evolution of the effective vortex pinning and the bulk VL structure, we observed metastable
We examine pinning and dynamics of Abrikosov vortices interacting with pinning centers placed in a moire pattern for varied moire lattice angles. We find a series of magic angles at which the critical current shows a pronounced dip corresponding to l