ﻻ يوجد ملخص باللغة العربية
We examine pinning and dynamics of Abrikosov vortices interacting with pinning centers placed in a moire pattern for varied moire lattice angles. We find a series of magic angles at which the critical current shows a pronounced dip corresponding to lattices in which the vortices can flow along quasi-one-dimensional channels. At these magic angles, the vortices move with a finite Hall angle. Additionally, for some lattice angles there are peaks in the critical current produced when the substrate has a quasiperiodic character that strongly reduces the vortex channeling. Our results should be general to a broad class of particle-like assemblies moving on moire patterns.
Motivated by the recent achievements in the realization of strongly correlated and topological phases in twisted van der Waals heterostructures, we study the low-energy properties of a twisted bilayer of nodal superconductors. It is demonstrated that
We numerically examine the ordering, pinning and flow of superconducting vortices interacting with a Santa Fe artificial ice pinning array. We find that as a function of magnetic field and pinning density, a wide variety of vortex states occur, inclu
The flux pinning force density (Fp) of the single crystalline FeTe0.60Se0.40 superconductor has been calculated from the magnetization measurements. The normalized Fp versus h (=H/Hirr) curves are scaled using the Dew-Hughes formula to underline the
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysi