ﻻ يوجد ملخص باللغة العربية
We examine the current driven dynamics for vortices interacting with conformal crystal pinning arrays and compare to the dynamics of vortices driven over random pinning arrays. We find that the pinning is enhanced in the conformal arrays over a wide range of fields, consistent with previous results from flux gradient-driven simulations. At fields above this range, the effectiveness of the pinning in the moving vortex state can be enhanced in the random arrays compared to the conformal arrays, leading to crossing of the velocity-force curves.
Conformal crystals are non-uniform structures created by a conformal transformation of regular two-dimensional lattices. We show that gradient-driven vortices interacting with a conformal pinning array exhibit substantially stronger pinning effects o
A conformal pinning array can be created by conformally transforming a uniform triangular pinning lattice to produces a new structure in which the six-fold ordering of the original lattice is conserved but where there is a spatial gradient in the den
We study effects of pinning on the dynamics of a vortex lattice in a type II superconductor in the strong-pinning situation and determine the force--velocity (or current--voltage) characteristic combining analytical and numerical methods. Our analysi
We numerically examine the ordering, pinning and flow of superconducting vortices interacting with a Santa Fe artificial ice pinning array. We find that as a function of magnetic field and pinning density, a wide variety of vortex states occur, inclu
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of