ﻻ يوجد ملخص باللغة العربية
We use symbolic dynamics to study discrete adaptive games, such as the minority game and the El Farol Bar problem. We show that no such game can have deterministic chaos. We put upper bounds on the statistical complexity and period of these games; the former is at most linear in the number agents and the size of their memories. We extend our results to cases where the players have infinite-duration memory (they are still non-chaotic) and to cases where there is ``noise in the play (leaving the complexity unchanged or even reduced). We conclude with a mechanism that can reconcile our findings with the phenomenology, and reflections on the merits of simple models of mutual adaptation.
We study the dynamics of a simple adaptive system in the presence of noise and periodic damping. The system is composed by two paths connecting a source and a sink, the dynamics is governed by equations that usually describe food search of the paradi
Lorentzian distributions have been largely employed in statistical mechanics to obtain exact results for heterogeneous systems. Analytic continuation of these results is impossible even for slightly deformed Lorentzian distributions, due to the diver
Self-organized bistability (SOB) is the counterpart of self-organized criticality (SOC), for systems tuning themselves to the edge of bistability of a discontinuous phase transition, rather than to the critical point of a continuous one. The equation
A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the Euler-Maruyama scheme in common non-adaptive BD, we employ an embedded Heun-Euler integrator for the propagation of the o
Productive societies feature high levels of cooperation and strong connections between individuals. Public Goods Games (PGGs) are frequently used to study the development of social connections and cooperative behavior in model societies. In such game