ﻻ يوجد ملخص باللغة العربية
The demagnetization curve, or initial magnetization curve, is studied by examining the embedded Barkhausen noise using the non-equilibrium, zero temperature random-field Ising model. The demagnetization curve is found to reflect the critical point seen as the systems disorder is changed. Critical scaling is found for avalanche sizes and the size and number of spanning avalanches. The critical exponents are derived from those related to the saturation loop and subloops. Finally, the behavior in the presence of long range demagnetizing fields is discussed. Results are presented for simulations of up to one million spins.
We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered,
We study an asymptotic behavior of the return probability for the critical random matrix ensemble in the regime of strong multifractality. The return probability is expected to show critical scaling in the limit of large time or large system size. Us
We study the localization properties of electrons moving on two-dimensional bi-partite lattices in the presence of disorder. The models investigated exhibit a chiral symmetry and belong to the chiral orthogonal (chO), chiral symplectic (chS) or chira
Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by whi
Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three-dimensional Edwards-Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We