ﻻ يوجد ملخص باللغة العربية
We study the localization properties of electrons moving on two-dimensional bi-partite lattices in the presence of disorder. The models investigated exhibit a chiral symmetry and belong to the chiral orthogonal (chO), chiral symplectic (chS) or chiral unitary (chU) symmetry class. The disorder is introduced via real random hopping terms for chO and chS, while complex random phases generate the disorder in the chiral unitary model. In the latter case an additional spatially constant, perpendicular magnetic field is also applied. Using a transfer-matrix-method, we numerically calculate the smallest Lyapunov exponents that are related to the localization length of the electronic eigenstates. From a finite-size scaling analysis, the logarithmic divergence of the localization length at the quantum critical point at E=0 is obtained. We always find for the critical exponent kappa, which governs the energy dependence of the divergence, a value close to 2/3. This result differs from the exponent kappa=1/2 found previously for a chiral unitary model in the absence of a constant magnetic field. We argue that a strong constant magnetic field changes the exponent kappa within the chiral unitary symmetry class by effectively restoring particle-hole symmetry even though a magnetic field induced transition from the ballistic to the diffusive regime cannot be fully excluded.
We discuss quantum propagation of dipole excitations in two dimensions. This problem differs from the conventional Anderson localization due to existence of long range hops. We found that the critical wavefunctions of the dipoles always exist which m
The integer quantum Hall transition (IQHT) is one of the most mysterious members of the family of Anderson transitions. Since the 1980s, the scaling behavior near the IQHT has been vigorously studied in experiments and numerical simulations. Despite
Lessons from Anderson localization highlight the importance of dimensionality of real space for localization due to disorder. More recently, studies of many-body localization have focussed on the phenomenon in one dimension using techniques of exact
Recent high-precision results for the critical exponent of the localization length at the integer quantum Hall (IQH) transition differ considerably between experimental ($ u_text{exp} approx 2.38$) and numerical ($ u_text{CC} approx 2.6$) values obta
Repeated local measurements of quantum many body systems can induce a phase transition in their entanglement structure. These measurement-induced phase transitions (MIPTs) have been studied for various types of dynamics, yet most cases yield quantita