ﻻ يوجد ملخص باللغة العربية
We discuss the application of wavelet transforms to a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. The two-dimensional version of the model (one-dimensional interface) is considered, mainly in the adiabatic limit of very slow driving. On length scales shorter than a crossover length (which grows with the strength of surface tension), the effective interface roughness exponent $zeta$ is $simeq 1.20$, close to the expected value for the universality class of the quenched Edwards-Wilkinson model. We find that the waiting times between avalanches are fully uncorrelated, as the wavelet transform of their autocorrelations scales as white noise. Similarly, detrended size-size correlations give a white-noise wavelet transform. Consideration of finite driving rates, still deep within the intermittent regime, shows the wavelet transform of correlations scaling as $1/f^{1.5}$ for intermediate frequencies. This behavior is ascribed to intra-avalanche correlations.
We study roughness probability distribution functions (PDFs) of the time signal for a critical interface model, which is known to provide a good description of Barkhausen noise in soft ferromagnets. Starting with time ``windows of data collection muc
A simple mechanical spring-block model is introduced for studying magnetization phenomena and in particularly the Barkhausen noise. The model captures and reproduces the accepted microscopic picture of domain wall movement and pinning. Computer simul
We study the probability distributions of interface roughness, sampled among successive equilibrium configurations of a single-interface model used for the description of Barkhausen noise in disordered magnets, in space dimensionalities $d=2$ and 3.
The demagnetization curve, or initial magnetization curve, is studied by examining the embedded Barkhausen noise using the non-equilibrium, zero temperature random-field Ising model. The demagnetization curve is found to reflect the critical point se
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z