ﻻ يوجد ملخص باللغة العربية
The motion of the structure determining components is highly collective, both in amorphous solids and in undercooled liquids. This has been deduced from experimental low temperature data in the tunneling regime as well as from the vanishing isotope effect in diffusion in glasses and undercooled liquids. In molecular dynamics simulations of glasses one observes that both low frequency resonant vibrations and atomic jumps are centered on more than 10 atoms which, in densely packed materials, form chainlike structures. With increasing temperature the number of atoms jumping collectively increases. These chains of collectively jumping atoms are also seen in undercooled liquids. Collectivity only vanishes at higher temperatures. This collectivity is intimately related to the dynamic heterogeneity which causes a non-Gaussianity of the atomic displacements.
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of suc
We show that viscoelastic effects play a crucial role in the damping of vibrational modes in harmonic amorphous solids. The relaxation of a given plane wave is described by a memory function of a semi-infinite one-dimensions mass-spring chain. The in
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab
The mechanical failure of amorphous media is a ubiquitous phenomenon from material engineering to geology. It has been noticed for a long time that the phenomenon is scale-free, indicating some type of criticality. In spite of attempts to invoke Self
Amorphous solids increase their stress as a function of an applied strain until a mechanical yield point whereupon the stress cannot increase anymore, afterwards exhibiting a steady state with a constant mean stress. In stress controlled experiments