ﻻ يوجد ملخص باللغة العربية
The mechanical failure of amorphous media is a ubiquitous phenomenon from material engineering to geology. It has been noticed for a long time that the phenomenon is scale-free, indicating some type of criticality. In spite of attempts to invoke Self-Organized Criticality, the physical origin of this criticality, and also its universal nature, being quite insensitive to the nature of microscopic interactions, remained elusive. Recently we proposed that the precise nature of this critical behavior is manifested by a spinodal point of a thermodynamic phase transition. Moreover, at the spinodal point there exists a divergent correlation length which is associated with the system-spanning instabilities (known also as shear bands) which are typical to the mechanical yield. Demonstrating this requires the introduction of an order parameter that is suitable for distinguishing between disordered amorphous systems, and an associated correlation function, suitable for picking up the growing correlation length. The theory, the order parameter, and the correlation functions used are universal in nature and can be applied to any amorphous solid that undergoes mechanical yield. Critical exponents for the correlation length divergence and the system size dependence are estimated. The phenomenon is seen at its sharpest in athermal systems, as is explained below; in this paper we extend the discussion also to thermal systems, showing that at sufficiently high temperatures the spinodal phenomenon is destroyed by thermal fluctuations.
Amorphous solids increase their stress as a function of an applied strain until a mechanical yield point whereupon the stress cannot increase anymore, afterwards exhibiting a steady state with a constant mean stress. In stress controlled experiments
The mechanical response of naturally abundant amorphous solids such as gels, jammed grains, and biological tissues are not described by the conventional paradigm of broken symmetry that defines crystalline elasticity. In contrast, the response of suc
We investigate site percolation in a hierarchical scale-free network known as the Dorogovtsev- Goltsev-Mendes network. We use the generating function method to show that the percolation threshold is 1, i.e., the system is not in the percolating phase
Mechanical deformation of amorphous solids can be described as consisting of an elastic part in which the stress increases linearly with strain, up to a yield point at which the solid either fractures or starts deforming plastically. It is well estab
The motion of the structure determining components is highly collective, both in amorphous solids and in undercooled liquids. This has been deduced from experimental low temperature data in the tunneling regime as well as from the vanishing isotope e