ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically Tunable Collective Modes in a MEMS Resonator Array

56   0   0.0 ( 0 )
 نشر من قبل Eyal Buks
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using optical diffraction, we study the mechanical vibrations of an array of micromechanical resonators. Implementing tunable electrostatic coupling between the suspended, doubly-clamped Au beams leads to the formation of a band of collective vibrational modes within these devices. The evolution of these modes with coupling strength is clearly manifested in the optical diffraction pattern of light transmitted through the array. The experimental results are analyzed using a simple model for one-dimensional phonons. These structures offer unique prospects for spectral analysis of complex mechanical stimuli.

قيم البحث

اقرأ أيضاً

Compact and electrically controllable on-chip sources of indistinguishable photons are desirable for the development of integrated quantum technologies. We demonstrate that two quantum dot light emitting diodes (LEDs) in close proximity on a single c hip can function as a tunable, all-electric quantum light source. Light emitted by an electrically excited driving LED is used to excite quantum dots the neighbouring diode. The wavelength of the quantum dot emission from the neighbouring driven diode is tuned via the quantum confined Stark effect. We also show that we can electrically tune the fine structure splitting.
We have studied the current through a carbon nanotube quantum dot with one ferromagnetic and one normal-metal lead. For the values of gate voltage at which the normal lead is resonant with the single available non-degenerate energy level on the dot, we observe a pronounced decrease in the current for one bias direction. We show that this rectification is spin-dependent, and that it stems from the interplay between the spin accumulation and the Coulomb blockade on the quantum dot. Our results imply that the current is spin-polarized for one direction of the bias, and that the degree of spin polarization is fully and precisely tunable using the gate and bias voltages. As the operation of this spin diode does not require high magnetic fields or optics, it could be used as a building block for electrically controlled spintronic devices.
We have developed and tested a doubly tunable resonator, with the intention to simulate fast motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide half-wavelength microwave resonator, with fundamental re sonant frequency ~5 GHz. Both of its ends are terminated by dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows tuning of the resonant frequency by approximately 700 MHz. By using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to twice that of the resonators fundamental mode. We observe photon generation, at the fundamental frequency, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control the photon generation threshold, in good agreement with a theoretical model for the modulation of the boundary conditions. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings, resulting in current driving of the SQUIDs.
We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe for ce. In a second series of experiments, we actuate the resonator with only one oscillating force. Mechanical resonances feature exotic lineshapes with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode with a frequency ratio of either 2 or 3. Conventional lineshapes are recovered by detuning the frequency ratio using the voltage on a nearby gate electrode. The exotic lineshapes are attributed to strong coupling between the mechanical modes. The possibility to control the strength of the coupling with the gate voltage holds promise for various experiments, such as quantum manipulation, mechanical signal processing, and the study of the quantum-toclassical transition.
343 - B.N. Narozhny , I.V. Gornyi , 2020
Collective behavior is one of the most intriguing aspects of the hydrodynamic approach to electronic transport. Here we provide a consistent, unified calculation of the dispersion relations of the hydrodynamic collective modes in graphene. Taking int o account viscous effects, we show that the hydrodynamic sound mode in graphene becomes overdamped at sufficiently large momentum scales. Extending the linearized theory beyond the hydrodynamic regime, we connect the diffusive hydrodynamic charge density fluctuations with plasmons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا