ﻻ يوجد ملخص باللغة العربية
We report on the nonlinear coupling between the mechanical modes of a nanotube resonator. The coupling is revealed in a pump-probe experiment where a mode driven by a pump force is shown to modify the motion of a second mode measured with a probe force. In a second series of experiments, we actuate the resonator with only one oscillating force. Mechanical resonances feature exotic lineshapes with reproducible dips, peaks, and jumps when the measured mode is commensurate with another mode with a frequency ratio of either 2 or 3. Conventional lineshapes are recovered by detuning the frequency ratio using the voltage on a nearby gate electrode. The exotic lineshapes are attributed to strong coupling between the mechanical modes. The possibility to control the strength of the coupling with the gate voltage holds promise for various experiments, such as quantum manipulation, mechanical signal processing, and the study of the quantum-toclassical transition.
In physical systems, decoherence can arise from both dissipative and dephasing processes. In mechanical resonators, the driven frequency response measures a combination of both, while time domain techniques such as ringdown measurements can separate
Since the advent of atomic force microscopy, mechanical resonators have been used to study a wide variety of phenomena, such as the dynamics of individual electron spins, persistent currents in normal metal rings, and the Casimir force. Key to these
We describe a technique that enables a strong, coherent coupling between a single electronic spin qubit associated with a nitrogen-vacancy impurity in diamond and the quantized motion of a magnetized nano-mechanical resonator tip. This coupling is ac
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum reg
Nanoscale resonators that oscillate at high frequencies are useful in many measurement applications. We studied a high-quality mechanical resonator made from a suspended carbon nanotube driven into motion by applying a periodic radio frequency potent