ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for >= 400 GeV gamma-rays from the SNR Cas A

130   0   0.0 ( 0 )
 نشر من قبل Cecile Renault
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent detection of a hard X-ray component in the supernova remnant Cassiopeia A is interpreted as synchrotron emission from electrons accelerated to energies up to 40 TeV (Allen et al., 1997). It is therefore tempting to consider TeV gamma-ray emission from this object through : i) bremsstrahlung and inverse Compton radiation from electrons and/or ii) pi0 production from an associated high energy cosmic ray component hitting surrounding material. Cas A was observed by the CAT imaging Cherenkov telescope during the observing season Aug-Nov 1998. An upper limit to the integral flux above 400 GeV of 0.74x10^-11 gamma.cm^-2.s^-1 is derived. This result is used to constrain shock-acceleration models for production of VHE gamma-rays in SNRs.



قيم البحث

اقرأ أيضاً

The shell type SNR RXJ1713.7-3946 is a new SNR discovered by the ROSAT all sky survey. Recently, strong non-thermal X-ray emission from the northwest part of the remnant was detected by the ASCA satellite. This synchrotron X-ray emission strongly sug gests the existence of electrons with energies up to hundreds of TeV in the remnant. This SNR is, therefore, a good candidate TeV gamma ray source, due to the Inverse Compton scattering of the Cosmic Microwave Background Radiation by the shock accelerated ultra-relativistic electrons, as seen in SN1006. In this paper, we report a preliminary result of TeV gamma-ray observations of the SNR RXJ1713.7-3946 by the CANGAROO 3.8m telescope at Woomera, South Australia.
362 - T.Tanimori , Y.Hayami , S.Kamei 1998
This paper reports the first discovery of TeV gamma-ray emission from a supernova remnant made with the CANGAROO 3.8 m Telescope. TeV gamma rays were detected at the sky position and extension coincident with the north-east (NE) rim of shell-type Sup ernova remnant (SNR) SN1006 (Type Ia). SN1006 has been a most likely candidate for an extended TeV Gamma-ray source, since the clear synchrotron X-ray emission from the rims was recently observed by ASCA (Koyama et al. 1995), which is a strong evidence of the existence of very high energy electrons up to hundreds of TeV in the SNR. The observed TeV gamma-ray flux was $(2.4pm 0.5(statistical) pm 0.7(systematic)) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 3.0pm 0.9$ TeV) and $ (4.6pm 0.6 pm 1.4) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV) from the 1996 and 1997 observations, respectively. Also we set an upper limit on the TeV gamma-ray emission from the SW rim, estimated to be $ 1.1 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV, 95% CL) in the 1997 data. The TeV gamma rays can be attributed to the 2.7 K cosmic background photons up-scattered by electrons of energies up to about 10$^{14}$ eV by the inverse Compton (IC) process. The observed flux of the TeV gamma rays, together with that of the non-thermal X-rays, gives firm constraints on the acceleration process in the SNR shell; a magnetic field of $6.5pm2$ $mu$G is inferred from both the synchrotron X-rays and inverse Compton TeV gamma-rays, which gives entirely consistent mechanisms that electrons of energies up to 10$^{14}$ eV are produced via the shock acceleration in SN1006.
Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission through the interaction of accelerated particles with the concentrated gas. The middle aged SN R W28, for its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12CO J=1-->0 molecular line emission). The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 +- 5) 10^-8 ph cm^-2 s^-1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations of the GeV to TeV flux ratio suggest a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronic-induced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by AGILE in the MeV-GeV energy range and by the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.
Observations have been made, using the University of Durham Mark 6 gamma ray telescope, of the very high energy gamma ray emission from a number of active galactic nuclei visible from the Southern hemisphere. Limits are presented to the VHE gamma ray emission from 1ES 0323+022, PKS 0829+046, 1ES 1101--232, Cen A, PKS 1514-24, RXJ 10578-275, and 1ES 2316-423, both for steady long-term emission and for outbursts of emission on timescales of 1 day.
224 - Prabir Banik , , Arunava Bhadra 2019
The galactic cosmic rays are generally believed to be originated in supernova remnants (SNRs), produced in diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. One of the key unsettled issue in SNR origin of c osmic ray model is the maximum attainable energy by a cosmic ray particle in the supernova shock. Recently it has been suggested that an amplification of effective magnetic field strength at the shock may take place in young SNRs due to growth of magnetic waves induced by accelerated cosmic rays and as a result the maximum energy achieved by cosmic rays in SNR may reach the knee energy instead of $sim 200$ TeV as predicted earlier under normal magnetic field situation. In the present work we investigate the implication of such maximum energy scenarios on TeV gamma rays and neutrino fluxes from the molecular clouds interacting with the SNR W28. The authors compute the gamma-ray and neutrino flux assuming two different values for the maximum energy reached by cosmic rays in the SNR, from CR interaction in nearby molecular clouds. Both protons and nuclei are considered as accelerated particles and as target material. Our findings suggest that the issue of the maximum energy of cosmic rays in SNRs can be observationally settled by the upcoming gamma-ray experiment the Large High Altitude Air Shower Observatory (LHAASO). The estimated neutrino fluxes from the molecular clouds are , however, out of reach of the present/near future generation of neutrino telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا