ترغب بنشر مسار تعليمي؟ اضغط هنا

A Search for VHE Gamma Rays from AGNs Visible from the Southern Hemisphere

218   0   0.0 ( 0 )
 نشر من قبل Lowry McComb
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations have been made, using the University of Durham Mark 6 gamma ray telescope, of the very high energy gamma ray emission from a number of active galactic nuclei visible from the Southern hemisphere. Limits are presented to the VHE gamma ray emission from 1ES 0323+022, PKS 0829+046, 1ES 1101--232, Cen A, PKS 1514-24, RXJ 10578-275, and 1ES 2316-423, both for steady long-term emission and for outbursts of emission on timescales of 1 day.

قيم البحث

اقرأ أيضاً

SS433, located at the center of the supernova remnant W50, is a close proximity binary system consisting of a compact star and a normal star. Jets of material are directed outwards from the vicinity of the compact star symmetrically to the east and w est. Non-thermal hard X-ray emission is detected from lobes lying on both sides. Shock accelerated electrons are expected to generate sub-TeV gamma rays through the inverse-Compton process in the lobes. Observations of the western X-ray lobe region of SS433/W50 system have been performed to detect sub-TeV gamma-rays using the 10m CANGAROO-II telescope in August and September, 2001, and July and September, 2002. The total observation times are 85.2 hours for ON source, and 80.8 hours for OFF source data. No significant excess of sub-TeV gamma rays has been found at 3 regions of the western X-ray lobe of SS433/W50 system. We have derived 99% confidence level upper limits to the fluxes of gamma rays and have set constraints on the strengths of the magnetic fields assuming the synchrotron/inverse-Compton model for the wide energy range of photon spectrum from radio to TeV. The derived lower limits are 4.3 microgauss for the center of the brightest X-ray emission region and 6.3 microgauss for the far end from SS433 in the western X-ray lobe. In addition, we suggest that the spot-like X-ray emission may provide a major contribution to the hardest X-ray spectrum in the lobe.
We report the discovery of faint very high energy (VHE, E > 100 GeV) gamma-ray emission from the radio galaxy Centaurus A in deep observations performed with the H.E.S.S. experiment. A signal with a statistical significance of 5.0 sigma is detected f rom the region including the radio core and the inner kpc jets. The integral flux above an energy threshold of ~250 GeV is measured to be 0.8% of the flux of the Crab Nebula and the spectrum can be described by a power law with a photon index of 2.7 +/- 0.5_stat +/- 0.2_sys. No significant flux variability is detected in the data set. The discovery of VHE gamma-ray emission from Centaurus A reveals particle acceleration in the source to >TeV energies and, together with M 87, establishes radio galaxies as a class of VHE emitters.
The X-ray selected BL Lac PKS 2155-304 has been observed using the University of Durham Mark 6 very high energy gamma ray telescope during 1998. We find no evidence for TeV emission during these recent observations when the X-ray flux was observed to be low. We have reconsidered our measurements made in 1997 November when PKS 2155-304 was in a bright X-ray state and extended X-ray and GeV gamma ray observations were made as part of a multiwavelength campaign. Comparisons are made of the VHE emission during this time with the available data from other wavelengths.
The measurement of diffuse PeV gamma-ray emission from the Galactic plane would provide information about the energy spectrum and propagation of Galactic cosmic rays, and the detection of a point-like source of PeV gamma rays would be strong evidence for a Galactic source capable of accelerating cosmic rays up to at least a few PeV. This paper presents several un-binned maximum likelihood searches for PeV gamma rays in the Southern Hemisphere using 5 years of data from the IceTop air shower surface detector and the in-ice array of the IceCube Observatory. The combination of both detectors takes advantage of the low muon content and deep shower maximum of gamma-ray air showers, and provides excellent sensitivity to gamma rays between $sim$0.6 PeV and 100 PeV. Our measurements of point-like and diffuse Galactic emission of PeV gamma rays are consistent with background, so we constrain the angle-integrated diffuse gamma-ray flux from the Galactic Plane at 2 PeV to $2.61 times 10^{-19}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ at 90% confidence, assuming an E$^{-3}$ spectrum, and we estimate 90% upper limits on point-like emission at 2 PeV between 10$^{-21}$ - 10$^{-20}$ cm$^{-2}$ s$^{-1}$ TeV$^{-1}$ for an E$^{-2}$ spectrum, depending on declination. Furthermore, we exclude unbroken power-law emission up to 2 PeV for several TeV gamma-ray sources observed by H.E.S.S., and calculate upper limits on the energy cutoffs of these sources at 90% confidence. We also find no PeV gamma rays correlated with neutrinos from IceCubes high-energy starting event sample. These are currently the strongest constraints on PeV gamma-ray emission.
230 - J.-P. Lenain , D. Nedbal , M. Raue 2008
The BL Lac object RGB J0152+017 (z = 0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. We report recent observations of this source made in late October and November 2007 with t he H.E.S.S. array consisting of four imaging atmospheric Cerenkov telescopes. Contemporaneous observations were made in X-rays with the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. As a result, RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigmas was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of = 2.95 +- 0.36stat +- 0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component (extended jet and blob in jet) non-thermal synchrotron self-Compton (SSC) leptonic model, plus a thermal host galaxy component. The parameters that are found are very close to those found for TeV blazars in similar SSC studies. The location of its synchrotron peak, as derived from the SED in Swift data, allows clear classification as a high-frequency-peaked BL Lac (HBL).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا