ﻻ يوجد ملخص باللغة العربية
This paper reports the first discovery of TeV gamma-ray emission from a supernova remnant made with the CANGAROO 3.8 m Telescope. TeV gamma rays were detected at the sky position and extension coincident with the north-east (NE) rim of shell-type Supernova remnant (SNR) SN1006 (Type Ia). SN1006 has been a most likely candidate for an extended TeV Gamma-ray source, since the clear synchrotron X-ray emission from the rims was recently observed by ASCA (Koyama et al. 1995), which is a strong evidence of the existence of very high energy electrons up to hundreds of TeV in the SNR. The observed TeV gamma-ray flux was $(2.4pm 0.5(statistical) pm 0.7(systematic)) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 3.0pm 0.9$ TeV) and $ (4.6pm 0.6 pm 1.4) times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV) from the 1996 and 1997 observations, respectively. Also we set an upper limit on the TeV gamma-ray emission from the SW rim, estimated to be $ 1.1 times 10^{-12}$ cm$^{-2}$ s$^{-1}$ ($ge 1.7pm 0.5$ TeV, 95% CL) in the 1997 data. The TeV gamma rays can be attributed to the 2.7 K cosmic background photons up-scattered by electrons of energies up to about 10$^{14}$ eV by the inverse Compton (IC) process. The observed flux of the TeV gamma rays, together with that of the non-thermal X-rays, gives firm constraints on the acceleration process in the SNR shell; a magnetic field of $6.5pm2$ $mu$G is inferred from both the synchrotron X-rays and inverse Compton TeV gamma-rays, which gives entirely consistent mechanisms that electrons of energies up to 10$^{14}$ eV are produced via the shock acceleration in SN1006.
The shell type SNR RXJ1713.7-3946 is a new SNR discovered by the ROSAT all sky survey. Recently, strong non-thermal X-ray emission from the northwest part of the remnant was detected by the ASCA satellite. This synchrotron X-ray emission strongly sug
The galactic cosmic rays are generally believed to be originated in supernova remnants (SNRs), produced in diffusive shock acceleration (DSA) process in supernova blast waves driven by expanding SNRs. One of the key unsettled issue in SNR origin of c
The detection of high-energy astrophysical neutrinos and ultra-high-energy cosmic rays (UHECRs) provides a new way to explore sources of cosmic rays. One of the highest energy neutrino events detected by IceCube, tagged as IC35, is close to the UHECR
A search was conducted for TeV gamma-rays emitted from the direction of the ultra-high energy cosmic ray detected by the Flys Eye Experiment with E ~ 3 x 10**20 eV. No enhancement was found at a level of 10**-10 gamma/cm**2-sec for E>350 GeV. This up
An analysis of 7 years of Milagro data performed on a 10-degree angular scale has found two localized regions of excess of unknown origin with greater than 12 sigma significance. Both regions are inconsistent with gamma-ray emission with high confide