ﻻ يوجد ملخص باللغة العربية
We report observations of the four-image gravitational lens system Q2237+0305 with the VLA at 20 cm and 3.6 cm. The quasar was detected at both frequencies (approx 0.7 mJy) with a flat spectrum. All four lensed images are clearly resolved at 3.6 cm, and the agreement of the radio and optical image positions is excellent. No radio emission is detected from the lensing galaxy, and any fifth lensed quasar image must be fainter than sim 20% of the A image flux density. Since the optical quasar images are variable and susceptible to extinction, radio flux ratios provide the best measurement of the macrolensing magnification ratios. The radio B/A and C/A image flux ratios are consistent with the observed range of optical variations, but the D/A ratio is consistently higher in the radio than in the optical. The radio ratios are consistent with magnification ratios predicted by lens models, and weaken alternative interpretations for Q2237+0305. More accurate radio ratios can distinguish between the models, as well as improve our understanding of both microlensing and extinction in this system.
We present new brightness monitoring observations of the 4 components of gravitationally lensed system Q2237+0305, which show detection of an intrinsic quasar brightness fluctuation at a time of subdued microlensing activity, between June 27 and Octo
Spatially resolved spectroscopic data from the CIRPASS integral field unit (IFU) on Gemini are used to measure the gravitational lensing of the 4-image quasar Q2237+0305 on different size scales. A method for measuring the substructure present in the
The complex ten-component gravitational lens system B1933+503 has been monitored with the VLA during the period February to June 1998 with a view to measuring the time delay between the four compact components and hence to determine the Hubble parame
We use the high magnification event seen in the 1999 OGLE campaign light curve of image C of the quadruply imaged gravitational lens Q2237+0305 to study the structure of the quasar engine. We have obtained g- and r-band photometry at the Apache Point
We present hybrid maps of the A and B images of 0957+561 from each of four sessions of 6 cm VLBI observations that span the six-year interval 1987-1993. The inner- and outer-jets are clearly detected, and confirm the structures reported previously. T