ترغب بنشر مسار تعليمي؟ اضغط هنا

VLA 8.4-GHz monitoring observations of the CLASS gravitational lens B1933+503

61   0   0.0 ( 0 )
 نشر من قبل Andy Biggs
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. D. Biggs




اسأل ChatGPT حول البحث

The complex ten-component gravitational lens system B1933+503 has been monitored with the VLA during the period February to June 1998 with a view to measuring the time delay between the four compact components and hence to determine the Hubble parameter. Here we present the results of an `A configuration 8.4-GHz monitoring campaign which consists of 37 epochs with an average spacing of 2.8 days. The data have yielded light curves for the four flat-spectrum radio components (components 1, 3, 4 and 6). We observe only small flux density changes in the four flat-spectrum components which we do not believe are predominantly intrinsic to the source. Therefore the variations do not allow us to determine the independent time delays in this system. However, the data do allow us to accurately determine the flux density ratios between the four flat-spectrum components. These will prove important as modelling constraints and could prove crucial in future monitoring observations should these data show only a monotonic increase or decrease in the flux densities of the flat-spectrum components.

قيم البحث

اقرأ أيضاً

We report the discovery of the most complex arcsec-scale radio gravitational lens system yet known. B1933+503 was found during the course of the CLASS survey and MERLIN and VLA radio maps reveal up to 10 components. Four of these are compact and have flat spectra; the rest are more extended and have steep spectra. The background lensed object appears to consist of a flat spectrum core (quadruply imaged) and two compact lobes symmetrically disposed relative to the core. One of the lobes is quadruply imaged while the other is doubly imaged. An HST observation of the system with the WFPC2 shows a galaxy with an axial ratio of 0.5, but none of the images of the background object are detected. A redshift of 0.755 has been measured for the lens galaxy.
92 - E.E.Falco , J.Lehar 1996
We report observations of the four-image gravitational lens system Q2237+0305 with the VLA at 20 cm and 3.6 cm. The quasar was detected at both frequencies (approx 0.7 mJy) with a flat spectrum. All four lensed images are clearly resolved at 3.6 cm, and the agreement of the radio and optical image positions is excellent. No radio emission is detected from the lensing galaxy, and any fifth lensed quasar image must be fainter than sim 20% of the A image flux density. Since the optical quasar images are variable and susceptible to extinction, radio flux ratios provide the best measurement of the macrolensing magnification ratios. The radio B/A and C/A image flux ratios are consistent with the observed range of optical variations, but the D/A ratio is consistently higher in the radio than in the optical. The radio ratios are consistent with magnification ratios predicted by lens models, and weaken alternative interpretations for Q2237+0305. More accurate radio ratios can distinguish between the models, as well as improve our understanding of both microlensing and extinction in this system.
In this paper we present new observations of the gravitational lens system JVAS B0218+357 made with a global VLBI network at a frequency of 8.4 GHz. Our maps have an rms noise of 30 microJy/beam and with these we have been able to image much of the e xtended structure of the radio jet in both the A and B images at high resolution (~1 mas). The main use of these maps will be to enable us to further constrain the lens model for the purposes of H0 determination. We are able to identify several sub-components common to both images with the expected parity reversal, including one which we identify as a counter-jet. We have not been successful in detecting either the core of the lensing galaxy or a third image. Using a model of the lensing galaxy we have back-projected both of the images to the source plane and find that they agree well. However, there are small, but significant, differences which we suggest may arise from multi-path scattering in the ISM of the lensing galaxy. We also find an exponent of the radial mass distribution of approximately 1.04, in agreement with lens modelling of published 15-GHz VLBI data. Polarisation maps of each image are presented which show that the distributions of polarisation across images A and B are different. We suggest that this results from Faraday rotation and associated depolarisation in the lensing galaxy.
233 - L.V.E. Koopmans 2000
We present Very Large Array (VLA) 8.5-GHz light curves of the two lens images of the Cosmic Lens All Sky Survey (CLASS) gravitational lens B1600+434. We find a nearly linear decrease of 18-19% in the flux densities of both lens images over a period o f eight months (February-October) in 1998. Additionally, the brightest image A shows modulations up to 11% peak-to-peak on scales of days to weeks over a large part of the observing period. Image B varies significantly less on this time scale. We conclude that most of the short-term variability in image A is not intrinsic source variability, but is most likely caused by microlensing in the lens galaxy. The alternative, scintillation by the ionized Galactic ISM, is shown to be implausible based on its strong opposite frequency dependent behavior compared with results from multi-frequency WSRT monitoring observations (Koopmans & de Bruyn 1999). From these VLA light curves we determine a median time delay between the lens images of 47^{+5}_{-6} d (68%) or 47^{+12}_{-9} d (95%). We use two different methods to derive the time delay; both give the same result within the errors. We estimate an additional systematic error between -8 and +7 d. If the mass distribution of lens galaxy can be described by an isothermal model (Koopmans, de Bruyn & Jackson 1998), this time delay would give a value for the Hubble parameter, H_0=57^{+14}_{-11} (95% statistical) ^{+26}_{-15} (systematic) km/s/Mpc (Omega_m=1 and Omega_Lambda=0). Similarly, the Modified-Hubble-Profile mass model would give H_0=74^{+18}_{-15} (95% statistical) ^{+22}_{-22} (systematic) km/s/Mpc. For Omega_m=0.3 and Omega_Lambda=0.7, these values increase by 5.4%. ... (ABRIDGED)
Obtaining lensing time delay measurements requires long-term monitoring campaigns with a high enough resolution (< 1 arcsec) to separate the multiple images. In the radio, a limited number of high-resolution interferometer arrays make these observati ons difficult to schedule. To overcome this problem, we propose a technique for measuring gravitational time delays which relies on monitoring the total flux density with low-resolution but high-sensitivity radio telescopes to follow the variation of the brighter image. This is then used to trigger high-resolution observations in optimal numbers which then reveal the variation in the fainter image. We present simulations to assess the efficiency of this method together with a pilot project observing radio lens systems with the Westerbork Synthesis Radio Telescope (WSRT) to trigger Very Large Array (VLA) observations. This new method is promising for measuring time delays because it uses relatively small amounts of time on high-resolution telescopes. This will be important because instruments that have high sensitivity but limited resolution, together with an optimum usage of followup high-resolution observations from appropriate radio telescopes may in the future be useful for gravitational lensing time delay measurements by means of this new method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا