ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational determination of the time delays in gravitational lens system Q2237+030

433   0   0.0 ( 0 )
 نشر من قبل Victor Vakulik
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. Vakulik




اسأل ChatGPT حول البحث

We present new brightness monitoring observations of the 4 components of gravitationally lensed system Q2237+0305, which show detection of an intrinsic quasar brightness fluctuation at a time of subdued microlensing activity, between June 27 and October 12, 2003. These data were used to determine the time delays between the arrivals of the four images. The measured delays are -6, 35, and 2 hours for images B, C and D relative to A, respectively, so they confirm that the long history of brightness monitoring has produced significant detection of microlensing. However the error bars associated with the delays, of order 2 days, are too large to discriminate between competing macro-imaging models. Moreover, our simulations show that for the amplitude of this intrinsic fluctuation and for photometric errors intrinsic to optical monitoring from our 1.5-m telescope or from the OGLE monitoring, a daily sampled brightness record cannot produce reliable lags for model discrimination. We use our simulations to devise a strategy for future delay determination with optical data. Nevertheless, we regard these first estimates to be significant, since they are the first direct measurements of time delays made for this system from ground-based observations in the visual wavelengths. Our results provide the most convincing confirmation of the gravitational-lens nature of Q2237+0305, and give observational justification to the extensive literature which attributes the quasars previously observed brightness fluctuations to microlensing.

قيم البحث

اقرأ أيضاً

92 - E.E.Falco , J.Lehar 1996
We report observations of the four-image gravitational lens system Q2237+0305 with the VLA at 20 cm and 3.6 cm. The quasar was detected at both frequencies (approx 0.7 mJy) with a flat spectrum. All four lensed images are clearly resolved at 3.6 cm, and the agreement of the radio and optical image positions is excellent. No radio emission is detected from the lensing galaxy, and any fifth lensed quasar image must be fainter than sim 20% of the A image flux density. Since the optical quasar images are variable and susceptible to extinction, radio flux ratios provide the best measurement of the macrolensing magnification ratios. The radio B/A and C/A image flux ratios are consistent with the observed range of optical variations, but the D/A ratio is consistently higher in the radio than in the optical. The radio ratios are consistent with magnification ratios predicted by lens models, and weaken alternative interpretations for Q2237+0305. More accurate radio ratios can distinguish between the models, as well as improve our understanding of both microlensing and extinction in this system.
95 - C.S. Kochanek 2003
There are now 10 firm time delay measurements in gravitational lenses. The physics of time delays is well understood, and the only important variable for interpreting the time delays to determine H_0 is the mean surface mass density <k> (in units of the critical density for gravitational lensing) of the lens galaxy at the radius of the lensed images. More centrally concentrated mass distributions with lower <k> predict higher Hubble constants, with H_0~1-<k> to lowest order. While we cannot determine <k> directly given the available data on the current time delay lenses, we find H_0=48+/-3 km/s/Mpc for the isothermal (flat rotation curve) models, which are our best present estimate for the mass distributions of the lens galaxies. Only if we eliminate the dark matter halo of the lenses and use a constant mass-to-light ratio (M/L) model to find H_0=71+/-3 km/s/Mpc is the result consistent with local estimates. Measurements of time delays in better-constrained systems or observations to obtain new constraints on the current systems provide a clear path to eliminating the <k> degeneracy and making estimates of H_0 with smaller uncertainties than are possible locally. Independent of the value of H_0, the time delay lenses provide a new and unique probe of the dark matter distributions of galaxies and clusters because they measure the total (light + dark) matter surface density.
107 - Paul L. Schechter 2004
Present day estimates of the Hubble constant based on Cepheids and on the cosmic microwave background radiation are uncertain by roughly 10% (on the conservative assumption that the universe may not be PERFECTLY flat). Gravitational lens time delay m easurements can produce estimates that are less uncertain, but only if a variety of major difficulties are overcome. These include a paucity of constraints on the lensing potential, the degeneracies associated with mass sheets and the central concentration of the lensing galaxy, multiple lenses, microlensing by stars, and the small variability amplitude typical of most quasars. To date only one lens meets all of these challenges. Several suffer only from the central concentration degeneracy, which may be lifted if one is willing to assume that systems with time delays are either like better constrained systems with non-variable sources, or alternatively, like nearby galaxies.
Strong lensing gravitational time delays are a powerful and cost effective probe of dark energy. Recent studies have shown that a single lens can provide a distance measurement with 6-7 % accuracy (including random and systematic uncertainties), prov ided sufficient data are available to determine the time delay and reconstruct the gravitational potential of the deflector. Gravitational-time delays are a low redshift (z~0-2) probe and thus allow one to break degeneracies in the interpretation of data from higher-redshift probes like the cosmic microwave background in terms of the dark energy equation of state. Current studies are limited by the size of the sample of known lensed quasars, but this situation is about to change. Even in this decade, wide field imaging surveys are likely to discover thousands of lensed quasars, enabling the targeted study of ~100 of these systems and resulting in substantial gains in the dark energy figure of merit. In the next decade, a further order of magnitude improvement will be possible with the 10000 systems expected to be detected and measured with LSST and Euclid. To fully exploit these gains, we identify three priorities. First, support for the development of software required for the analysis of the data. Second, in this decade, small robotic telescopes (1-4m in diameter) dedicated to monitoring of lensed quasars will transform the field by delivering accurate time delays for ~100 systems. Third, in the 2020s, LSST will deliver 1000s of time delays; the bottleneck will instead be the aquisition and analysis of high resolution imaging follow-up. Thus, the top priority for the next decade is to support fast high resolution imaging capabilities, such as those enabled by the James Webb Space Telescope and next generation adaptive optics systems on large ground based telescopes.
Optical photometry is presented for the quadruple gravitational lens PG1115+080. A preliminary reduction of data taken from November 1995 to June 1996 gives component ``C leading component ``B by 23.7+/-3.4 days and components ``A1 and ``A2 by 9.4 da ys. A range of models has been fit to the image positions, none of which gives an adequate fit. The best fitting and most physically plausible of these, taking the lensing galaxy and the associated group of galaxies to be singular isothermal spheres, gives a Hubble constant of 42 km/s/Mpc for Omega=1, with an observational uncertainty of 14%, as computed from the B-C time delay measurement. Taking the lensing galaxy to have an approximately E5 isothermal mass distribution yields H0=64 km/sec/Mpc while taking the galaxy to be a point mass gives H0=84 km/sec/Mpc. The former gives a particularly bad fit to the position of the lensing galaxy, while the latter is inconsistent with measurements of nearby galaxy rotation curves. Constraints on these and other possible models are expected to improve with planned HST observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا