ﻻ يوجد ملخص باللغة العربية
We have detected the T~Tauri star, DO Tauri, in a 0.6$$-resolution VLA map of 43.3 GHz ($lambda$ = 7 mm) continuum emission. The 43 GHz flux density lies on the same power-law slope defined by 89 to 232 GHz measurements, F$_ u$ $propto u^{alpha}$ with index $alpha$ = 2.39$pm$0.23, confirming that the 43.3 GHz emission is thermal radiation from circumstellar dust. Upper limits to the flux densities at 8.4 and 22.5 GHz constrain the contribution of free-free emission from a compact ionized wind to less than 49%. The dust emissivity index, $beta$, is $0.39pm$0.23, if the emission is optically thin. Fitting a model of a thin circumstellar disk to the observed spectral energy distribution gives $beta = 0.6pm0.3$, consistent with the power-law derivation. Both values are substantially lower than is generally accepted for the interstellar medium, suggesting grain growth. Given the youth of DO Tau and the early evolutionary state of its circumstellar disk, this result implies that mm-size grains have already formed by the early T-Tauri phase.
We have detected circumstellar molecular gas around a small sample of T Tauri stars through aperture synthesis imaging of CO(2-1) emission at ~2-3 resolution. RY Tauri, DL Tauri, DO Tauri, and AS 209 show resolved and elongated gaseous emission. For
We present the first detection and mapping of the HD 32297 debris disk at 1.3 mm with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). With a sub-arcsecond beam, this detection represents the highest angular resolution (sub)mm de
We present high-resolution imaging of the young binary T Tauri in 3 mm continuum emission. Compact dust emission with integrated flux density 50 +/- 6 mJy is resolved in an aperture synthesis map at 0.5 resolution and is centered at the position of t
We present results of high-resolution imaging toward HL Tau by the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We have obtained 1.3 and 2.7 mm dust continua with an angular resolution down to 0.13 arc second. Through model fitti
The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised star