ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging the circumstellar environment of the young T Tauri star SU Aurigae

85   0   0.0 ( 0 )
 نشر من قبل Sandra Jeffers
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised starlight from the stars circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $sim$ 50$^circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulosity.

قيم البحث

اقرأ أيضاً

We report new multi-colour photometry and high-resolution spectroscopic observations of the long-period variable V501 Aur, previously considered to be a weak-lined T-Tauri star belonging to the Taurus-Auriga star-forming region. The spectroscopic obs ervations reveal that V501 Aur is a single-lined spectroscopic binary system with a 68.8-day orbital period, a slightly eccentric orbit (e ~ 0.03), and a systemic velocity discrepant from the mean of Taurus-Auriga. The photometry shows quasi-periodic variations on a different, ~55-day timescale that we attribute to rotational modulation by spots. No eclipses are seen. The visible object is a rapidly rotating (vsini ~ 25 km/s) early K star, which along with the rotation period implies it must be large (R > 26.3 Rsun), as suggested also by spectroscopic estimates indicating a low surface gravity. The parallax from the Gaia mission and other independent estimates imply a distance much greater than the Taurus-Auriga region, consistent with the giant interpretation. Taken together, this evidence together with a re-evaluation of the LiI~$lambda$6707 and H$alpha$ lines shows that V501 Aur is not a T-Tauri star, but is instead a field binary with a giant primary far behind the Taurus-Auriga star-forming region. The large mass function from the spectroscopic orbit and a comparison with stellar evolution models suggest the secondary may be an early-type main-sequence star.
We present the discovery of two extended $sim$0.12 mag dimming events of the weak-lined T-Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in February 2009, and continues as of November 2 016. Since the egress of the current event has not yet been observed, it suggests a period of $>$13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are caused by an orbiting body (e.g. a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a $sim$0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.
We conducted high-contrast polarimetry observations of T Tau in the H-band, using the HiCIAO instrument mounted on the Subaru Telescope, revealing structures as near as 0.$arcsec$1 from the stars T Tau N and T Tau S. The whole T Tau system is found t o be surrounded by nebula-like envelopes, and several outflow-related structures are detected in these envelopes. We analyzed the detailed polarization patterns of the circumstellar structures near each component of this triple young star system and determined constraints on the circumstellar disks and outflow structures. We suggest that the nearly face-on circumstellar disk of T Tau N is no larger than 0.$arcsec$8, or 117 AU, in the northwest, based on the existence of a hole in this direction, and no larger than 0.$arcsec$27, or 40 AU, in the south. A new structure N5 extends to about 0.$arcsec$42, or 59 AU, on the southwest of the star, believed to be part of the disk. We suggest that T Tau S is surrounded by a highly inclined circumbinary disk with a radius of about 0.$arcsec$3, or 44 AU, with a position angle of about 30$^circ$, that is misaligned with the orbit of the T Tau S binary. After analyzing the positions and polarization vector patterns of the outflow-related structures, we suggest that T Tau S should trigger the well-known E-W outflow, and is also likely to be responsible for a southwest precessing outflow coil and a possible south outflow.
Context. V2492 Cyg is a young eruptive star that went into outburst in 2010. The near-infrared color changes observed since the outburst peak suggest that the source belongs to a newly defined sub-class of young eruptive stars, where time-dependent a ccretion and variable line-of-sight extinction play a combined role in the flux changes. Aims. In order to learn about the origin of the light variations and to explore the circumstellar and interstellar environment of V2492 Cyg, we monitored the source at ten different wavelengths, between 0.55 mu m and 2.2 mu m from the ground and between 3.6 mu m and 160 mu m from space. Methods. We analyze the light curves and study the color-color diagrams via comparison with the standard reddening path. We examine the structure of the molecular cloud hosting V2492 Cyg by computing temperature and optical depth maps from the far-infrared data. Results. We find that the shapes of the light curves at different wavelengths are strictly self-similar and that the observed variability is related to a single physical process, most likely variable extinction. We suggest that the central source is episodically occulted by a dense dust cloud in the inner disk, and, based on the invariability of the far-infrared fluxes, we propose that it is a long-lived rather than a transient structure. In some respects, V2492 Cyg can be regarded as a young, embedded analog of UX Orionis-type stars. Conclusions. The example of V2492 Cyg demonstrates that the light variations of young eruptive stars are not exclusively related to changing accretion. The variability provided information on an azimuthally asymmetric structural element in the inner disk. Such an asymmetric density distribution in the terrestrial zone may also have consequences for the initial conditions of planet formation.
160 - J.-F. Donati , L. Yu , C. Moutou 2016
We report results of an extended spectropolarimetric and photometric monitoring of the weak-line T Tauri star V830 Tau and its recently-detected newborn close-in giant planet. Our observations, carried out within the MaTYSSE programme, were spread ov er 91d, and involved the ESPaDOnS and Narval spectropolarimeters linked to the 3.6m Canada-France-Hawaii, the 2m Bernard Lyot and the 8-m Gemini-North Telescopes. Using Zeeman-Doppler Imaging, we characterize the surface brightness distributions, magnetic topologies and surface differential rotation of V830 Tau at the time of our observations, and demonstrate that both distributions evolve with time beyond what is expected from differential rotation. We also report that near the end of our observations, V830 Tau triggered one major flare and two weaker precursors, showing up as enhanced red-shifted emission in multiple spectral activity proxies. With 3 different filtering techniques, we model the radial velocity (RV) activity jitter (of semi-amplitude 1.2km/s) that V830 Tau generates, successfully retrieve the 68m/s RV planet signal hiding behind the jitter, further confirm the existence of V830 Tau b and better characterize its orbital parameters. We find that the method based on Gaussian-process regression performs best thanks to its higher ability at modelling not only the activity jitter, but also its temporal evolution over the course of our observations, and succeeds at reproducing our RV data down to a rms precision of 35m/s. Our result provides new observational constraints on scenarios of star / planet formation and demonstrates the scientific potential of large-scale searches for close-in giant planets around T Tauri stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا