ترغب بنشر مسار تعليمي؟ اضغط هنا

CARMA Millimeter-Wave Aperture Synthesis Imaging of the HD 32297 Debris Disk

156   0   0.0 ( 0 )
 نشر من قبل Holly Maness
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first detection and mapping of the HD 32297 debris disk at 1.3 mm with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). With a sub-arcsecond beam, this detection represents the highest angular resolution (sub)mm debris disk observation made to date. Our model fits to the spectral energy distribution from the CARMA flux and new Spitzer MIPS photometry support the earlier suggestion that at least two, possibly three, distinct grain populations are traced by the current data. The observed millimeter map shows an asymmetry between the northeast and southwest disk lobes, suggesting large grains may be trapped in resonance with an unseen exoplanet. Alternatively, the observed morphology could result from the recent breakup of a massive planetesimal. A similar-scale asymmetry is also observed in scattered light but not in the mid-infrared. This contrast between asymmetry at short and long wavelengths and symmetry at intermediate wavelengths is in qualitative agreement with predictions of resonant debris disk models. With resolved observations in several bands spanning over three decades in wavelength, HD 32297 provides a unique testbed for theories of grain and planetary dynamics, and could potentially provide strong multi-wavelength evidence for an exoplanetary system.

قيم البحث

اقرأ أيضاً

We present new $H$-band scattered light images of the HD 32297 edge-on debris disk obtained with the Gemini Planet Imager (GPI). The disk is detected in total and polarized intensity down to a projected angular separation of 0.15, or 20au. On the oth er hand, the large scale swept-back halo remains undetected, likely a consequence of its markedly blue color relative to the parent body belt. We analyze the curvature of the disk spine and estimate a radius of $approx$100au for the parent body belt, smaller than past scattered light studies but consistent with thermal emission maps of the system. We employ three different flux-preserving post-processing methods to suppress the residual starlight and evaluate the surface brightness and polarization profile along the disk spine. Unlike past studies of the system, our high fidelity images reveal the disk to be highly symmetric and devoid of morphological and surface brightness perturbations. We find the dust scattering properties of the system to be consistent with those observed in other debris disks, with the exception of HR 4796. Finally, we find no direct evidence for the presence of a planetary-mass object in the system.
We present an adaptive optics imaging detection of the HD 32297 debris disk at L (3.8 microns) obtained with the LBTI/LMIRcam infrared instrument at the LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5 from ~ 0.3-1.1 (30-12 0 AU). The disk at L is bowed, as was seen at shorter wavelengths. This likely indicates the disk is not perfectly edge-on and contains highly forward scattering grains. Interior to ~ 50 AU, the surface brightness at L rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at $lesssim$ 50 AU. Comparing the color of the outer (50 $< r$/AU $< 120$) portion of the disk at L with archival HST/NICMOS images of the disk at 1-2 microns allows us to test the recently proposed cometary grains model of Donaldson et al. 2013. We find that the model fails to match the disks surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.9). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 microns is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.
We present ALMA 1.3 mm (230 GHz) observations of the HD 32297 and HD 61005 debris disks, two of the most iconic debris disks due to their dramatic swept-back wings seen in scattered light images. These observations achieve sensitivities of 14 and 13 $mu$Jy beam$^{-1}$ for HD 32297 and HD 61005, respectively, and provide the highest resolution images of these two systems at millimeter wavelengths to date. By adopting a MCMC modeling approach, we determine that both disks are best described by a two-component model consisting of a broad ($Delta R/R> 0.4$) planetesimal belt with a rising surface density gradient, and a steeply falling outer halo aligned with the scattered light disk. The inner and outer edges of the planetesimal belt are located at $78.5pm8.1$ AU and $122pm3$ AU for HD 32297, and $41.9pm0.9$ AU and $67.0pm0.5$ AU for HD 61005. The halos extend to $440pm32$ AU and $188pm8$ AU, respectively. We also detect $^{12}$CO J$=2-1$ gas emission from HD 32297 co-located with the dust continuum. These new ALMA images provide observational evidence that larger, millimeter-sized grains may also populate the extended halos of these two disks previously thought to only be composed of small, micron-sized grains. We discuss the implications of these results for potential shaping and sculpting mechanisms of asymmetric debris disks.
We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD 32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, w e detect the nearly edge-on disk at >5sigma levels from ~0.45 arcsec to ~1.7 arcsec (50-192 AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of ~0.75 arcsec (NE side) and ~0.65 arcsec (SW side). Global forward-modelling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110 AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95 AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from ~0.25-1.6 arcsec, although the central region is quite noisy and high S/N are only found in the range ~0.75-1.2 arcsec. The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from ~10% at 0.55 arcsec to ~25% at 1.6 arcsec. The maximum is found at scattering angles of ~90degrees, either from the main components of the disk or from dust grains blown out to larger radii.
Gas has been detected in a number of debris disks. It is likely secondary, i.e. produced by colliding solids. Here, we report ALMA Band 8 observations of neutral carbon in the CO-rich debris disk around the 15--30 Myr old A-type star HD 32297. We fin d that C$^0$ is located in a ring at $sim$110 au with a FWHM of $sim$80 au, and has a mass of $(3.5pm0.2)times10^{-3}$ M$_oplus$. Naively, such a surprisingly small mass can be accumulated from CO photo-dissociation in a time as short as $sim$10$^4$ yr. We develop a simple model for gas production and destruction in this system, properly accounting for CO self-shielding and shielding by neutral carbon, and introducing a removal mechanism for carbon gas. We find that the most likely scenario to explain both C$^0$ and CO observations, is one where the carbon gas is rapidly removed on a timescale of order a thousand years and the system maintains a very high CO production rate of $sim$15 M$_oplus$ Myr$^{-1}$, much higher than the rate of dust grind-down. We propose a possible scenario to meet these peculiar conditions: the capture of carbon onto dust grains, followed by rapid CO re-formation and re-release. In steady state, CO would continuously be recycled, producing a CO-rich gas ring that shows no appreciable spreading over time. This picture might be extended to explain other gas-rich debris disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا