ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of correlated noise on SuperWASP detection rates for transiting extra-solar planets

132   0   0.0 ( 0 )
 نشر من قبل Alexis Smith
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a model of the stellar populations in the fields observed by one of the SuperWASP-N cameras in the 2004 observing season. We use the Besancon Galactic model to define the range of stellar types and metallicities present, and populate these objects with transiting extra-solar planets using the metallicity relation of Fischer & Valenti (2005). We investigate the ability of SuperWASP to detect these planets in the presence of realistic levels of correlated systematic noise (`red noise). We find that the number of planets that transit with a signal-to-noise ratio of 10 or more increases linearly with the number of nights of observations. Based on a simulation of detection rates across 20 fields observed by one camera, we predict that a total of 18.6 pm 8.0 planets should be detectable from the SuperWASP-N 2004 data alone. The best way to limit the impact of co-variant noise and increase the number of detectable planets is to boost the signal-to-noise ratio, by increasing the number of observed transits for each candidate transiting planet. This requires the observing baseline to be increased, by spending a second observing season monitoring the same fields.



قيم البحث

اقرأ أيضاً

A recent study demonstrated that there is significant covariance structure in the noise on data from ground-based photometric surveys designed to detect transiting extrasolar planets. Such correlation in the noise has often been overlooked, especiall y when predicting the number of planets a particular survey is likely to find. Indeed, the shortfall in the number of transiting extrasolar planets discovered by such surveys seems to be explained by co-variance in the noise. We analyse SuperWASP (Wide Angle Search for Planets) data and determine that there is a significant amount of correlated systematic noise present. After modelling the potential planet catch, we conclude that this noise places a significant limit on the number of planets that SuperWASP is likely to detect; and that the best way to boost the signal-to-noise ratio and limit the impact of co-variant noise is to increase the number of observed transits for each candidate transiting planet.
86 - H. K. C. Yee 2002
Searching for transits provides a very promising technique for finding close-in extra-solar planets. Transiting planets present the advantage of allowing one to determine physical properties such as mass and radius unambiguously. The EXPLORE (EXtra-s olar PLanet Occultation REsearch) project is a transit search project carried out using wide-field CCD imaging cameras on 4-m class telescopes, and 8-10m class telescopes for radial velocity verification of the photometric candidates. We describe some of the considerations that go into the design of the EXPLORE transit search to maximize the discovery rate and minimize contaminating objects that mimic transiting planets. We show that high precision photometry (2 to 10 millimag) and high time sampling (few minutes) are crucial for sifting out contaminating signatures, such as grazing binaries. We have completed two searches using the 8k MOSAIC camera at the CTIO4m and the CFH12k camera at CFHT, with runs covering 11 and 16 nights, respectively. We obtained preliminary light curves for approximately 47,000 stars with better than ~1% photometric precision. A number of light curves with flat-bottomed eclipses consistent with being produced by transiting planets has been discovered. Preliminary results from follow-up spectroscopic observations using the VLT UVES spectrograph and the Keck HIRES spectrograph obtained for a number of the candidates are presented. Data from four of these can be interpreted consistently as possible planet candidates, although further data are still required for definitive confirmations.
One of the obstacles in the search for exoplanets via transits is the large number of candidates that must be followed up, few of which ultimately prove to be exoplanets. Any method that could make this process more efficient by somehow identifying t he best candidates and eliminating the worst would therefore be very useful. Seager and Mallen-Ornelas (2003) demonstrated that it was possible to discern between blends and exoplanets using only the photometric characteristics of the transits. However, these techniques are critically dependent on the shape of the transit, characterization of which requires very high precision photometry of a sort that is atypical for candidates identified from transit searches. We present a method relying only on transit duration, depth, and period, which require much less precise photometry to determine accurately. The numerical tool we derive, the exoplanet diagnostic eta, is intended to identify the subset of candidates from a transit search that is most likely to contain exoplanets, and thus most worthy of subsequent follow-up studies. The effectiveness of the diagnostic is demonstrated with its success in separating modeled exoplanetary transits and interlopers, and by applying it to actual OGLE transit candidates.
We present a comprehensive analysis of 10 years of HARPS radial velocities of the K2V dwarf star HD 13808, which has previously been reported to host two unconfirmed planet candidates. We use the state-of-the-art nested sampling algorithm PolyChord t o compare a wide variety of stellar activity models, including simple models exploiting linear correlations between RVs and stellar activity indicators, harmonic models for the activity signals, and a more sophisticated Gaussian process regression model. We show that the use of overly-simplistic stellar activity models that are not well-motivated physically can lead to spurious `detections of planetary signals that are almost certainly not real. We also reveal some difficulties inherent in parameter and model inference in cases where multiple planetary signals may be present. Our study thus underlines the importance both of exploring a variety of competing models and of understanding the limitations and precision settings of ones sampling algorithm. We also show that at least in the case of HD 13808, we always arrive at consistent conclusions about two particular signals present in the RV, regardless of the stellar activity model we adopt; these two signals correspond to the previously-reported though unconfirmed planet candidate signals. Given the robustness and precision with which we can characterize these two signals, we deem them secure planet detections. In particular, we find two planets orbiting HD 13808 at distances of 0.11, 0.26 AU with periods of 14.2, 53.8 d, and minimum masses of 11, 10 Earth masses.
97 - M. G. Lattanzi 1997
We present the results of realistic end-to-end simulations of observations of nearby stars with the proposed global astrometry mission GAIA, recently recommended within the context of ESAs Horizon 2000 Plus long-term scientific program. We show that under realistic, if challenging, assumptions, GAIA will be capable of surveying the solar neighborhood within 100-200 pc for the astrometric signatures of planets around stars down to V = 16 mag. The wealth of results on the frequency and properties of massive planets from GAIA observations will provide a formidable testing ground on which to confront the most sophisticated theories on planetary formation and evolution. Finally, we suggest the possibility of more sophisticated probabilistic detection techniques which may be able to detect the presence of Earth-like planets around stars within 20 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا