ترغب بنشر مسار تعليمي؟ اضغط هنا

GAIA and the Hunt for Extra-Solar Planets

98   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. G. Lattanzi




اسأل ChatGPT حول البحث

We present the results of realistic end-to-end simulations of observations of nearby stars with the proposed global astrometry mission GAIA, recently recommended within the context of ESAs Horizon 2000 Plus long-term scientific program. We show that under realistic, if challenging, assumptions, GAIA will be capable of surveying the solar neighborhood within 100-200 pc for the astrometric signatures of planets around stars down to V = 16 mag. The wealth of results on the frequency and properties of massive planets from GAIA observations will provide a formidable testing ground on which to confront the most sophisticated theories on planetary formation and evolution. Finally, we suggest the possibility of more sophisticated probabilistic detection techniques which may be able to detect the presence of Earth-like planets around stars within 20 pc.



قيم البحث

اقرأ أيضاً

The proposed global astrometry mission {it GAIA}, recently recommended within the context of ESAs Horizon 2000 Plus long-term scientific program, appears capable of surveying the solar neighborhood within $sim$ 200 pc for the astrometric signatures o f planets around stars down to the magnitude limit of $V$=17 mag, which includes late M dwarfs at 100 pc. Realistic end-to-end simulations of the GAIA global astrometric measurements have yielded first quantitative estimates of the sensitivity to planetary perturbations and of the ability to measure their orbital parameters. Single Jupiter-mass planets around normal solar-type stars appear detectable up to 150 pc ($Vle $12 mag) with probabilities $ge$ 50 per cent for orbital periods between $sim$2.5 and $sim$8 years, and their orbital parameters measured with better than 30 per cent accuracy to about 100 pc. Jupiter-like objects (same mass and period as our giant planet) are found with similar probabilities up to 100 pc.These first experiments indicate that the {it GAIA} results would constitute an important addition to those which will come from the other ongoing and planned planet-search programs. These data combined would provide a formidable testing ground on which to confront theories of planetary formation and evolution.
70 - M. Mayor 2003
This paper summarizes the information gathered for 16 still unpublished exoplanet candidates discovered with the CORALIE echelle spectrograph mounted on the Euler Swiss telescope at La Silla Observatory. Amongst these new candidates, 10 are typical e xtrasolar Jupiter-like planets on intermediate- or long-period (100<P<1350d) and fairly eccentric (0.2<e<0.5) orbits (HD19994, HD65216, HD92788, HD111232, HD114386, HD142415, HD147513, HD196050, HD216437, HD216770). Two of these stars are in binary systems. The next 3 candidates are shorter-period planets (HD6434, HD121504) with lower eccentricities among which a hot Jupiter (HD83443). More interesting cases are finally given by the multiple-planet systems HD82943 and HD169830. The former is a resonant P_2/P_1=2/1 system in which planet-planet interactions are influencing the system evolution. The latter is more hierarchically structured.
125 - C. Perrier , J.P. Sivan , D. Naef 2003
Precise radial-velocity observations at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph have been undertaken since 1994. In addition to several discoveries described elsewhere, including and following that of 51 Peg b, t hey reveal new sub-stellar companions with essentially moderate to long periods. We report here about such companions orbiting five solar-type stars (HD 8574, HD 23596, HD 33636, HD 50554, HD 106252) and one sub-giant star (HD 190228). The companion of HD 8574 has an intermediate period of 227.55 days and a semi--major axis of 0.77 AU. All other companions have long periods, exceeding 3 years, and consequently their semi-major axes are around or above 2 AU. The detected companions have minimum masses m2sini ranging from slightly more than 2 M_Jup to 10.6 M_Jup. These additional objects reinforce the conclusion that most planetary companions have masses lower than 5 M_Jup but with a tail of the mass distribution going up above 15 M_Jup. The orbits are all eccentric and 4 out of 6 have an eccentricity of the order of 0.5. Four stars exhibit solar metallicity, one is metal-rich and one metal-poor. With 6 new extra-solar planet candidates discovered, increasing their total known to-date number to 115, the ELODIE Planet Search Survey yield is currently 18. We emphasize that 3 out of the 6 companions could in principle be resolved by diffraction-limited imaging on 8m-class telescopes depending on the achievable contrast, and therefore be primary targets for first attempts of extra-solar planet direct imaging.
245 - C. A. Watson 2010
All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. It is, however, possible to determine the inclination angle, i, between the rotation axis of a star and an observers line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P_rot) and the stellar radius (R_star). This allows the removal of the sin i dependency of spectroscopically derived extra-solar planet masses under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis. We have carried out an extensive literature search and present a catalogue of v sin i, P_rot, and R_star estimates for exoplanet host stars. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R_star estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This allows proper 1-sigma two-tailed confidence limits to be placed on the derived sin is along with the transit probability for each planet to be determined. While a small proportion of systems yield sin is significantly greater than 1, most likely due to poor P_rot estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of ~90 degrees and high transit probabilities. In total, we estimate the true masses of 133 extra-solar planets. Of these, only 6 have revised masses that place them above the 13 Jupiter mass deuterium burning limit. Our work reveals a population of high-mass planets with low eccentricities and we speculate that these may represent the signature of different planetary formation mechanisms at work.
Exoplanet surveys have confirmed one of humanitys (and all teenagers) worst fears: we are weird. If our Solar System were observed with present-day Earth technology -- to put our system and exoplanets on the same footing -- Jupiter is the only planet that would be detectable. The statistics of exo-Jupiters indicate that the Solar System is unusual at the ~1% level among Sun-like stars (or ~0.1% among all stars). But why are we different? Successful formation models for both the Solar System and exoplanet systems rely on two key processes: orbital migration and dynamical instability. Systems of close-in super-Earths or sub-Neptunes require substantial radial inward motion of solids either as drifting mm- to cm-sized pebbles or migrating Earth-mass or larger planetary embryos. We argue that, regardless of their formation mode, the late evolution of super-Earth systems involves migration into chains of mean motion resonances, generally followed by instability when the disk dissipates. This pattern is likely also ubiquitous in giant planet systems. We present three models for inner Solar System formation -- the low-mass asteroid belt, Grand Tack, and Early Instability models -- each invoking a combination of migration and instability. We identify bifurcation points in planetary system formation. We present a series of events to explain why our Solar System is so weird. Jupiters core must have formed fast enough to quench the growth of Earths building blocks by blocking the flux of inward-drifting pebbles. The large Jupiter/Saturn mass ratio is rare among giant exoplanets but may be required to maintain Jupiters wide orbit. The giant planets instability must have been gentle, with no close encounters between Jupiter and Saturn, also unusual in the larger (exoplanet) context. Our Solar System system is thus the outcome of multiple unusual, but not unheard of, events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا