ﻻ يوجد ملخص باللغة العربية
We obtained optical and near-infrared spectra of Type$,$Ia supernovae (SNe$,$Ia) at epochs ranging from 224 to 496 days after the explosion. The spectra show emission lines from forbidden transitions of singly ionised iron and cobalt atoms. We used non-local thermodynamic equilibrium (NLTE) modelling of the first and second ionisation stages of iron, nickel, and cobalt to fit the spectra using a sampling algorithm allowing us to probe a broad parameter space. We derive velocity shifts, line widths, and abundance ratios for iron and cobalt. The measured line widths and velocity shifts of the singly ionised ions suggest a shared emitting region. Our data are fully compatible with radioactive $^{56}$Ni decay as the origin for cobalt and iron. We compare the measured abundance ratios of iron and cobalt to theoretical predictions of various SN$,$Ia explosion models. These models include, in addition to $^{56}$Ni, different amounts of $^{57}$Ni and stable $^{54,56}$Fe. We can exclude models that produced only $^{54,56}$Fe or only $^{57}$Ni in addition to $^{56}$Ni. If we consider a model that has $^{56}$Ni, $^{57}$Ni, and $^{54,56}$Fe then our data imply that these ratios are $^{54,56}$Fe / $^{56}$Ni $=0.272pm0.086$ and $^{57}$Ni / $^{56}$Ni $=0.032pm0.011$.
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th
In the dense stellar environment of the globular clusters, compact binaries are produced dynamically. Therefore the fraction of type Ia supernovae that explode in globular clusters is expected to be higher than the fraction of mass residing in these.
Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). While it is not entirely clear if and when an explosion is triggered in such systems, numerical models suggest that a detonation might be initiated before the stars have c
Despite their use as cosmological distance indicators and their importance in the chemical evolution of galaxies, the unequivocal identification of the progenitor systems and explosion mechanism of normal type Ia supernova (SN Ia) remains elusive. Th
Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SN Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, t