ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-correlation of WMAP 3rd year and the SDSS DR4 galaxy survey: new evidence for Dark Energy

45   0   0.0 ( 0 )
 نشر من قبل Enrique Gaztanaga
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We cross-correlate the third-year WMAP data with galaxy samples extracted from the SDSS DR4 (SDSS4) covering 13% of the sky, increasing by a factor of 3.7 the volume sampled in previous analyses. The new measurements confirm a positive cross-correlation with higher significance (total signal-to-noise of about 4.7). The correlation as a function of angular scale is well fitted by the integrated Sachs-Wolfe (ISW) effect for LCDM flat FRW models with a cosmological constant. The combined analysis of different samples gives Omega_L=0.80-0.85$ (68% Confidence Level, CL) or $0.77-0.86$ (95% CL). We find similar best fit values for Omega_L for different galaxy samples with median redshifts of z ~0.3 and z ~0.5, indicating that the data scale with redshift as predicted by the LCDM cosmology (with equation of state parameter w=-1). This agreement is not trivial, but can not yet be used to break the degeneracy constraints in the w versus Omega_L plane using only the ISW data.

قيم البحث

اقرأ أيضاً

We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, $Lambda$CDM and $w$CDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data. We consider four extensions of the minimal dark energy-dominated scenarios: 1) nonzero curvature $Omega_k$, 2) number of relativistic species $N_{rm eff}$ different from the standard value of 3.046, 3) time-varying equation-of-state of dark energy described by the parameters $w_0$ and $w_a$ (alternatively quoted by the values at the pivot redshift, $w_p$, and $w_a$), and 4) modified gravity described by the parameters $mu_0$ and $Sigma_0$ that modify the metric potentials. We also consider external information from Planck CMB measurements; BAO measurements from SDSS, 6dF, and BOSS; RSD measurements from BOSS; and SNIa information from the Pantheon compilation. Constraints on curvature and the number of relativistic species are dominated by the external data; when these are combined with DES Y1, we find $Omega_k=0.0020^{+0.0037}_{-0.0032}$ at the 68% confidence level, and $N_{rm eff}<3.28, (3.55)$ at 68% (95%) confidence. For the time-varying equation-of-state, we find the pivot value $(w_p, w_a)=(-0.91^{+0.19}_{-0.23}, -0.57^{+0.93}_{-1.11})$ at pivot redshift $z_p=0.27$ from DES alone, and $(w_p, w_a)=(-1.01^{+0.04}_{-0.04}, -0.28^{+0.37}_{-0.48})$ at $z_p=0.20$ from DES Y1 combined with external data; in either case we find no evidence for the temporal variation of the equation of state. For modified gravity, we find the present-day value of the relevant parameters to be $Sigma_0= 0.43^{+0.28}_{-0.29}$ from DES Y1 alone, and $(Sigma_0, mu_0)=(0.06^{+0.08}_{-0.07}, -0.11^{+0.42}_{-0.46})$ from DES Y1 combined with external data, consistent with predictions from GR.
223 - M. Gatti , P. Vielzeuf , C. Davis 2017
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sa mple with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-$z$ methods applied to the same source galaxy sample. We apply the method to three photo-$z$ codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhood Fitting (DNF), and Random Forest-based photo-$z$ (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-$z$s. The systematic uncertainty in the mean redshift bias of the source galaxy sample is $Delta z lesssim 0.02$, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int o five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
The gravitational-wave event GW170817, together with the electromagnetic counterpart, shows that the speed of tensor perturbations $c_T$ on the cosmological background is very close to that of light $c$ for the redshift $z<0.009$. In generalized Proc a theories, the Lagrangians compatible with the condition $c_T=c$ are constrained to be derivative interactions up to cubic order, besides those corresponding to intrinsic vector modes. We place observational constraints on a dark energy model in cubic-order generalized Proca theories with intrinsic vector modes by running the Markov chain Monte Carlo (MCMC) code. We use the cross-correlation data of the integrated Sachs-Wolfe (ISW) signal and galaxy distributions in addition to the data sets of cosmic microwave background, baryon acoustic oscillations, type Ia supernovae, local measurements of the Hubble expansion rate, and redshift-space distortions. We show that, unlike cubic-order scalar-tensor theories, the existence of intrinsic vector modes allows the possibility for evading the ISW-galaxy anticorrelation incompatible with the current observational data. As a result, we find that the dark energy model in cubic-order generalized Proca theories exhibits a better fit to the data than the cosmological constant, even by including the ISW-galaxy correlation data in the MCMC analysis.
104 - Y. Omori , E. Baxter , C. Chang 2018
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one (Y1) data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg$^{2}$. With the combined measurements from four source galaxy redshift bins, we reject the hypothesis of no lensing with a significance of $10.8sigma$. When employing angular scale cuts, this significance is reduced to $6.8sigma$, which remains the highest signal-to-noise measurement of its kind to date. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial $Lambda$CDM model, finding $A = 0.99 pm 0.17$. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the $Lambda$CDM model, we obtain the marginalized constraints of $Omega_{rm m}=0.261^{+0.070}_{-0.051}$ and $S_{8}equiv sigma_{8}sqrt{Omega_{rm m}/0.3} = 0.660^{+0.085}_{-0.100}$. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT and Planck data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا