ﻻ يوجد ملخص باللغة العربية
The gravitational-wave event GW170817, together with the electromagnetic counterpart, shows that the speed of tensor perturbations $c_T$ on the cosmological background is very close to that of light $c$ for the redshift $z<0.009$. In generalized Proca theories, the Lagrangians compatible with the condition $c_T=c$ are constrained to be derivative interactions up to cubic order, besides those corresponding to intrinsic vector modes. We place observational constraints on a dark energy model in cubic-order generalized Proca theories with intrinsic vector modes by running the Markov chain Monte Carlo (MCMC) code. We use the cross-correlation data of the integrated Sachs-Wolfe (ISW) signal and galaxy distributions in addition to the data sets of cosmic microwave background, baryon acoustic oscillations, type Ia supernovae, local measurements of the Hubble expansion rate, and redshift-space distortions. We show that, unlike cubic-order scalar-tensor theories, the existence of intrinsic vector modes allows the possibility for evading the ISW-galaxy anticorrelation incompatible with the current observational data. As a result, we find that the dark energy model in cubic-order generalized Proca theories exhibits a better fit to the data than the cosmological constant, even by including the ISW-galaxy correlation data in the MCMC analysis.
We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, $Lambda$CDM and $w$CDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is
We present the strongest robust constraints on primordial non-Gaussianity (PNG) from currently available galaxy surveys, combining large-scale clustering measurements and their cross-correlations with the cosmic microwave background. We update the da
I present to this conference our latest measurements of the integrated Sachs-Wolfe (ISW) effect. After a brief review of the reasons for which this effect arises and of the technique to detect it by cross-correlating the cosmic microwave background (
New physics increasing the expansion rate just prior to recombination is among the least unlikely solutions to the Hubble tension, and would be expected to leave an important signature in the early Integrated Sachs-Wolfe (eISW) effect, a source of Co