ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Energy Survey Year 1 Results: Cross-correlation between DES Y1 galaxy weak lensing and SPT+Planck CMB weak lensing

105   0   0.0 ( 0 )
 نشر من قبل Eric Baxter
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one (Y1) data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg$^{2}$. With the combined measurements from four source galaxy redshift bins, we reject the hypothesis of no lensing with a significance of $10.8sigma$. When employing angular scale cuts, this significance is reduced to $6.8sigma$, which remains the highest signal-to-noise measurement of its kind to date. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial $Lambda$CDM model, finding $A = 0.99 pm 0.17$. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the $Lambda$CDM model, we obtain the marginalized constraints of $Omega_{rm m}=0.261^{+0.070}_{-0.051}$ and $S_{8}equiv sigma_{8}sqrt{Omega_{rm m}/0.3} = 0.660^{+0.085}_{-0.100}$. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT and Planck data.



قيم البحث

اقرأ أيضاً

We measure the cross-correlation between redMaGiC galaxies selected from the Dark Energy Survey (DES) Year-1 data and gravitational lensing of the cosmic microwave background (CMB) reconstructed from South Pole Telescope (SPT) and Planck data over 12 89 sq. deg. When combining measurements across multiple galaxy redshift bins spanning the redshift range of $0.15<z<0.90$, we reject the hypothesis of no correlation at 19.9$sigma$ significance. When removing small-scale data points where thermal Sunyaev-Zeldovich signal and nonlinear galaxy bias could potentially bias our results, the detection significance is reduced to 9.9$sigma$. We perform a joint analysis of galaxy-CMB lensing cross-correlations and galaxy clustering to constrain cosmology, finding $Omega_{rm m} = 0.276^{+0.029}_{-0.030}$ and $S_{8}=sigma_{8}sqrt{mathstrut Omega_{rm m}/0.3} = 0.800^{+0.090}_{-0.094}$. We also perform two alternate analyses aimed at constraining only the growth rate of cosmic structure as a function of redshift, finding consistency with predictions from the concordance $Lambda$CDM model. The measurements presented here are part of a joint cosmological analysis that combines galaxy clustering, galaxy lensing and CMB lensing using data from DES, SPT and Planck.
We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The catalogues cover two main fields: Stripe 82, and an area overlapping the South Pole Telescope surve y region. We describe our data analysis process and in particular our shape measurement using two independent shear measurement pipelines, METACALIBRATION and IM3SHAPE. The METACALIBRATION catalogue uses a Gaussian model with an innovative internal calibration scheme, and was applied to $riz$-bands, yielding 34.8M objects. The IM3SHAPE catalogue uses a maximum-likelihood bulge/disc model calibrated using simulations, and was applied to $r$-band data, yielding 21.9M objects. Both catalogues pass a suite of null tests that demonstrate their fitness for use in weak lensing science. We estimate the 1$sigma$ uncertainties in multiplicative shear calibration to be $0.013$ and $0.025$ for the METACALIBRATION and IM3SHAPE catalogues, respectively.
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 equiv sigma_8 (Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $Omega_m = 0.264^{+0.032}_{-0.019}$ for $Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $Omega_m$ are lower than the central values from Planck ...
We constrain the mass--richness scaling relation of redMaPPer galaxy clusters identified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters into $4times3$ bins of richness $lambda$ and redshift $z$ for $lambdage q20$ and $0.2 leq z leq 0.65$ and measure the mean masses of these bins using their stacked weak lensing signal. By modeling the scaling relation as $langle M_{rm 200m}|lambda,zrangle = M_0 (lambda/40)^F ((1+z)/1.35)^G$, we constrain the normalization of the scaling relation at the 5.0 per cent level as $M_0 = [3.081 pm 0.075 ({rm stat}) pm 0.133 ({rm sys})] cdot 10^{14} {rm M}_odot$ at $lambda=40$ and $z=0.35$. The richness scaling index is constrained to be $F=1.356 pm 0.051 ({rm stat})pm 0.008 ({rm sys})$ and the redshift scaling index $G=-0.30pm 0.30 ({rm stat})pm 0.06 ({rm sys})$. These are the tightest measurements of the normalization and richness scaling index made to date. We use a semi-analytic covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our analysis accounts for the following sources of systematic error: shear and photometric redshift errors, cluster miscentering, cluster member dilution of the source sample, systematic uncertainties in the modeling of the halo--mass correlation function, halo triaxiality, and projection effects. We discuss prospects for reducing this systematic error budget, which dominates the uncertainty on $M_0$. Our result is in excellent agreement with, but has significantly smaller uncertainties than, previous measurements in the literature, and augurs well for the power of the DES cluster survey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid and WFIRST.
123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split int o five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا