ﻻ يوجد ملخص باللغة العربية
We estimate the evaporation timescale for spherical HI clouds consisting of the cold neutral medium surrounded by the warm neutral medium. We focus on clouds smaller than 1pc, which corresponds to tiny HI clouds recently discovered by Braun & Kanekar and Stanimirovi{c} & Heiles. By performing one-dimensional spherically symmetric numerical simulations of the two-phase interstellar medium (ISM), we derive the timescales as a function of the cloud size and of pressure of the ambient warm medium. We find that the evaporation timescale of the clouds of 0.01 pc is about 1Myr with standard ISM pressure, $p/k_{B}sim 10^{3.5}$ K cm$^{-3}$, and for clouds larger than about 0.1 pc it depends strongly on the pressure. In high pressure cases, there exists a critical radius for clouds growing as a function of pressure, but the minimum critical size is $sim$ 0.03 pc for a standard environment. If tiny HI clouds exist ubiquitously, our analysis suggests two implications: tiny HI clouds are formed continuously with the timescale of 1Myr, or the ambient pressure around the clouds is much higher than the standard ISM pressure. We also find that the results agree well with those obtained by assuming quasi-steady state evolution. The cloud-size dependence of the timescale is well explained by an analytic approximate formula derived by Nagashima, Koyama & Inutsuka. We also compare it with the evaporation rate given by McKee & Cowie.
We present three-dimensional magnetohydrodynamic simulations of magnetized gas clouds accelerated by hot winds. We initialize gas clouds with tangled internal magnetic fields and show that this field suppresses the disruption of the cloud: rather tha
We develop a physical model for how galactic disks survive and/or are destroyed in interactions. Based on dynamical arguments, we show gas primarily loses angular momentum to internal torques in a merger. Gas within some characteristic radius (a func
Recently, Frauchiger and Renner proposed a Gedankenexperiment, which was claimed to be able to prove that quantum theory cannot consistently describe the use of itself. Here we show that the conclusions of Frauchiger and Renner actually came from the
When talking to secondary school students, first impressions are crucial. Accidentally say something that sounds boring and youll lose them in seconds. A physical demonstration can be an eye-catching way to begin an activity or spark off a conversati
Arguably the most favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The exp