ترغب بنشر مسار تعليمي؟ اضغط هنا

Copenhagen interpretation can survive the upgraded Schroedingers cat Gedankenexperiment

99   0   0.0 ( 0 )
 نشر من قبل Guang Ping He
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guang Ping He




اسأل ChatGPT حول البحث

Recently, Frauchiger and Renner proposed a Gedankenexperiment, which was claimed to be able to prove that quantum theory cannot consistently describe the use of itself. Here we show that the conclusions of Frauchiger and Renner actually came from their incorrect description of some quantum states. With the correct description there will be no inconsistent results, no matter which quantum interpretation theory is used. Especially, the Copenhagen interpretation can satisfy all the three assumptions (C), (Q), and (S) of Frauchiger and Renner simultaneously, thus it has no problem consistently describing the use of itself.

قيم البحث

اقرأ أيضاً

A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-corre cting codes are indispensible in todays information technologies, it is believed that QECC will play a similarly crucial role in tomorrows quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {it errors} translate, in an information theoretic language, the noise affecting a transmission line, {it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.
We estimate the evaporation timescale for spherical HI clouds consisting of the cold neutral medium surrounded by the warm neutral medium. We focus on clouds smaller than 1pc, which corresponds to tiny HI clouds recently discovered by Braun & Kanekar and Stanimirovi{c} & Heiles. By performing one-dimensional spherically symmetric numerical simulations of the two-phase interstellar medium (ISM), we derive the timescales as a function of the cloud size and of pressure of the ambient warm medium. We find that the evaporation timescale of the clouds of 0.01 pc is about 1Myr with standard ISM pressure, $p/k_{B}sim 10^{3.5}$ K cm$^{-3}$, and for clouds larger than about 0.1 pc it depends strongly on the pressure. In high pressure cases, there exists a critical radius for clouds growing as a function of pressure, but the minimum critical size is $sim$ 0.03 pc for a standard environment. If tiny HI clouds exist ubiquitously, our analysis suggests two implications: tiny HI clouds are formed continuously with the timescale of 1Myr, or the ambient pressure around the clouds is much higher than the standard ISM pressure. We also find that the results agree well with those obtained by assuming quasi-steady state evolution. The cloud-size dependence of the timescale is well explained by an analytic approximate formula derived by Nagashima, Koyama & Inutsuka. We also compare it with the evaporation rate given by McKee & Cowie.
We present three-dimensional magnetohydrodynamic simulations of magnetized gas clouds accelerated by hot winds. We initialize gas clouds with tangled internal magnetic fields and show that this field suppresses the disruption of the cloud: rather tha n mixing into the hot wind as found in hydrodynamic simulations, cloud fragments end up co-moving and in pressure equilibrium with their surroundings. We also show that a magnetic field in the hot wind enhances the drag force on the cloud by a factor ~(1+v_A^2/v_wind^2)$, where v_A is the Alfven speed in the wind and v_wind measures the relative speed between the cloud and the wind. We apply this result to gas clouds in several astrophysical contexts, including galaxy clusters, galactic winds, the Galactic center, and the outskirts of the Galactic halo. Our results can explain the prevalence of cool gas in galactic winds and galactic halos and how such cool gas survives in spite of its interaction with hot wind/halo gas. We also predict that drag forces can lead to a deviation from Keplerian orbits for the G2 cloud in the galactic center.
Quantum Chesire Cat is a counterintuitive phenomenon that provides a new window into the nature of the quantum systems in relation to multiple degrees of freedom associated with a single physical entity. Under suitable pre and postselections, a photo n (the cat) can be decoupled from its circular polarization (its grin). In this paper, we explore whether the grin without the cat can be teleported to a distant location. This will be a totally disembodied teleportation protocol. Based on the original Quantum Chesire Cat setup, we design a protocol where the circular polarization is successfully teleported between two spatially separated parties even when the photon is not physically present with them. The process raises questions in our understanding about properties of quantum system. In particular it shows that question like ``whose polarization is it can prove to be vacuous in such scenario.
197 - Y. Y. Huang , Y. Xu , Le Wang 2021
Arguably the most favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The exp erimental efforts, relying mostly on one archetypal material ZnCu$_3$(OH)$_6$Cl$_2$, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu$_3$(OH)$_6$Cl$_2$ that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu$_3$(OH)$_6$Cl$_2$ and a related QSL candidate Cu$_3$Zn(OH)$_6$FBr, we observed no contribution by any spin excitation nor any field-induced change to the thermal conductivity. These results impose different constraints on various scenarios about the ground state of these two kagome compounds: while a gapped QSL, or certain quantum paramagnetic state other than a QSL, is compatible with our results, a gapless QSL must be dramatically modified by the disorder so that gapless spin excitations are localized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا