ﻻ يوجد ملخص باللغة العربية
Recently, Frauchiger and Renner proposed a Gedankenexperiment, which was claimed to be able to prove that quantum theory cannot consistently describe the use of itself. Here we show that the conclusions of Frauchiger and Renner actually came from their incorrect description of some quantum states. With the correct description there will be no inconsistent results, no matter which quantum interpretation theory is used. Especially, the Copenhagen interpretation can satisfy all the three assumptions (C), (Q), and (S) of Frauchiger and Renner simultaneously, thus it has no problem consistently describing the use of itself.
A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-corre
We estimate the evaporation timescale for spherical HI clouds consisting of the cold neutral medium surrounded by the warm neutral medium. We focus on clouds smaller than 1pc, which corresponds to tiny HI clouds recently discovered by Braun & Kanekar
We present three-dimensional magnetohydrodynamic simulations of magnetized gas clouds accelerated by hot winds. We initialize gas clouds with tangled internal magnetic fields and show that this field suppresses the disruption of the cloud: rather tha
Quantum Chesire Cat is a counterintuitive phenomenon that provides a new window into the nature of the quantum systems in relation to multiple degrees of freedom associated with a single physical entity. Under suitable pre and postselections, a photo
Arguably the most favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The exp