ترغب بنشر مسار تعليمي؟ اضغط هنا

Infrared Spectroscopy of Symbiotic Stars. IV. V2116 Ophiuchi/GX 1+4, The Neutron Star Symbiotic

71   0   0.0 ( 0 )
 نشر من قبل Verne V. Smith
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have computed, based on 17 infrared radial velocities, the first set of orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The giants companion is a neutron star, the bright X-ray source GX 1+4. We find an orbital period of 1161 days by far the longest of any known X-ray binary. The orbit has a modest eccentricity of 0.10 with an orbital circularization time of less than 10^6 years. The large mass function of the orbit significantly restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun), the maximum mass of the M giant is 1.22M(Sun), making it the less massive star. Derived abundances indicate a slightly subsolar metallicity. Carbon and nitrogen are in the expected ratio resulting from the red-giant first dredge-up phase. The lack of O-17 suggests that the M-giant has a mass less than 1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun), much smaller than the estimated Roche lobe radius. Thus, the mass loss of the red giant is via a stellar wind. Although the M giant companion to the neutron star has a mass similar to the late-type star in low-mass X-ray binaries, its near-solar abundances and apparent runaway velocity are not fully consistent with the properties of this class of stars.



قيم البحث

اقرأ أيضاً

We report the detection of pulsations with $sim 124$ s period in V2116 Oph, the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are sinusoidal with modulation amplitude of up to 4% in blue light and were observed in ten differ ent observing sessions during 1996 April-August using a CCD photometer at the 1.6-m and 0.6-m telescopes of Laboratorio Nacional de Astrof{i}sica, in Brazil. The pulsations were also observed with the $UBVRI$ fast photometer. With only one exception the observed optical periods are consistent with those observed by the BATSE instrument on board the Compton Gamma Ray Observatory at the same epoch. There is a definite correlation between the observability of pulsations and the optical brightness of the system: V2116~Oph had $R$ magnitude in the range $15.3-15.5$ when the pulsed signal was detected, and $R = 16.0-17.7$ when no pulsations were present. The discovery makes GX 1+4 only the third of $sim 35$ accretion-powered X-ray pulsars to be firmly detected as a pulsating source in the optical. The presence of flickering and pulsations in V2116 Oph adds strong evidence for an accretion disk scenario in this system. The absolute magnitude of the pulsed component on 1996 May 27 is estimated to be $M_V sim -1.5$. The implied dimensions for the emitting region are $1.1 R_{sun}$, $3.2 R_{sun}$, and $7.0 R_{sun}$, for black-body spectral distributions with $T = 10^5$ K, $2 times 10^4$ K, and $1 times 10^4$ K, respectively.
We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accre tes from the stellar wind of an M-type giant companion. We measure a $9$ GHz radio flux density of $105.3 pm 7.3$ $mu$Jy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that that strong magnetic fields ($geq 10^{12}$ G) do not necessarily suppress jet formation.
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. The system has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability rema ins poorly understood. Aims. We study variability of GX 1+4 on long time-scale in X-ray and optical bands. Methods. The presented X-ray observations are from INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. The optical observations are from INTEGRAL Optical Monitoring Camera. Results. The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by ~50-70d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum, which confirms the 1161d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
72 - Ulisse Munari 2019
Any white dwarf or neutron star that accretes enough material from a red giant companion, such that this interaction can be detected at some wavelength, is currently termed Symbiotic Star (typical P(orb)=2-3 years). In the majority of ~400 known syst ems, the WD burns nuclearly at its surface the accreted material, and the resulting high temperature (T(eff)=10(^5)~K) and luminosity (L(hot)=10(^3)-10(^4) Lsun) allow ionization of a large fraction of the cool giants wind, making such symbiotic stars easily recognizable through the whole Galaxy and across the Local Group. X-ray observations are now revealing the existence of a parallel (and larger ?) population of optically-quiet, accreting-only symbiotic stars. Accretion flows and disks, ionization fronts and shock, complex 3D geometries and new evolution channels are gaining relevance and are reshaping our understanding of symbiotic stars. We review the different types of symbiotic stars currently in the family and their variegated outburst behaviors through an unified evolution scheme connecting them all.
We present new multicolour UBVRcIc photometric observations of symbiotic stars, EG And, Z And, BF Cyg, CH Cyg, CI Cyg, V1016 Cyg, V1329 Cyg, AG Dra, RS Oph, AG Peg, AX Per, and the newly discovered (August 2018) symbiotic star HBHA 1704-05, we carrie d out during the period from 2011.9 to 2018.75. Historical photographic and visual/V data were collected for HBHA 1704-05, FG Ser and AE Ara, AR Pav, respectively. The main aim of this paper is to present our original observations of symbiotic stars and to describe the most interesting features of their light curves. For example, periodic variations, rapid variability, minima, eclipses, outbursts, apparent changes of the orbital period, etc. Our measurements were obtained by the classical photoelectric photometry (till 2016.1) and the CCD photometry. Main results of our monitoring program are summarized and some specific characteristics are pointed out for future investigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا