ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of optical pulsations in V2116 Ophiuchi/GX 1+4

97   0   0.0 ( 0 )
 نشر من قبل Joao Braga
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection of pulsations with $sim 124$ s period in V2116 Oph, the optical counterpart of the low-mass X-ray binary GX 1+4. The pulsations are sinusoidal with modulation amplitude of up to 4% in blue light and were observed in ten different observing sessions during 1996 April-August using a CCD photometer at the 1.6-m and 0.6-m telescopes of Laboratorio Nacional de Astrof{i}sica, in Brazil. The pulsations were also observed with the $UBVRI$ fast photometer. With only one exception the observed optical periods are consistent with those observed by the BATSE instrument on board the Compton Gamma Ray Observatory at the same epoch. There is a definite correlation between the observability of pulsations and the optical brightness of the system: V2116~Oph had $R$ magnitude in the range $15.3-15.5$ when the pulsed signal was detected, and $R = 16.0-17.7$ when no pulsations were present. The discovery makes GX 1+4 only the third of $sim 35$ accretion-powered X-ray pulsars to be firmly detected as a pulsating source in the optical. The presence of flickering and pulsations in V2116 Oph adds strong evidence for an accretion disk scenario in this system. The absolute magnitude of the pulsed component on 1996 May 27 is estimated to be $M_V sim -1.5$. The implied dimensions for the emitting region are $1.1 R_{sun}$, $3.2 R_{sun}$, and $7.0 R_{sun}$, for black-body spectral distributions with $T = 10^5$ K, $2 times 10^4$ K, and $1 times 10^4$ K, respectively.



قيم البحث

اقرأ أيضاً

We have computed, based on 17 infrared radial velocities, the first set of orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The giants companion is a neutron star, the bright X-ray source GX 1+4. We find an orbital period of 1 161 days by far the longest of any known X-ray binary. The orbit has a modest eccentricity of 0.10 with an orbital circularization time of less than 10^6 years. The large mass function of the orbit significantly restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun), the maximum mass of the M giant is 1.22M(Sun), making it the less massive star. Derived abundances indicate a slightly subsolar metallicity. Carbon and nitrogen are in the expected ratio resulting from the red-giant first dredge-up phase. The lack of O-17 suggests that the M-giant has a mass less than 1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun), much smaller than the estimated Roche lobe radius. Thus, the mass loss of the red giant is via a stellar wind. Although the M giant companion to the neutron star has a mass similar to the late-type star in low-mass X-ray binaries, its near-solar abundances and apparent runaway velocity are not fully consistent with the properties of this class of stars.
We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accre tes from the stellar wind of an M-type giant companion. We measure a $9$ GHz radio flux density of $105.3 pm 7.3$ $mu$Jy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that that strong magnetic fields ($geq 10^{12}$ G) do not necessarily suppress jet formation.
We present our Swift monitoring campaign of the slowly rotating neutron star Be/X-ray transient GX 304-1 (spin period of ~275 s) when the source was not in outburst. We found that between its type-I outbursts the source recurrently exhibits a slowly decaying low-luminosity state (with luminosities of 10^(34-35) erg/s). This behaviour is very similar to what has been observed for another slowly rotating system, GRO J1008-57. For that source, this low-luminosity state has been explained in terms of accretion from a non-ionised (cold) accretion disk. Due to the many similarities between both systems, we suggest that GX 304-1 enters a similar accretion regime between its outbursts. The outburst activity of GX 304-1 ceased in 2016. Our continued monitoring campaign shows that the source is in a quasi-stable low-luminosity state (with luminosities a few factors lower than previously seen) for at least one year now. Using our NuSTAR observation in this state, we found pulsations at the spin period, demonstrating that the X-ray emission is due to accretion of matter onto the neutron star surface. If the accretion geometry during this quasi-stable state is the same as during the cold-disk state, then matter indeed reaches the surface (as predicted) during this latter state. We discuss our results in the context of the cold-disk accretion model.
104 - M.M. Serim 2017
We analyse archival CGRO-BATSE X-ray flux and spin frequency measurements of GX 1+4 over a time span of 3000 days. We systematically search for time dependent variations of torque luminosity correlation. Our preliminary results indicate that the corr elation shifts from being positive to negative on time scales of few 100 days.
76 - M.M. Serim 2017
We present analysis of RXTE--PCA observations of GX 1+4 between March 3, 2001 and January 31, 2003 together with the CGRO--BATSE X-ray flux and frequency derivative time series between 1991 and 1999. From the timing analysis of RXTE-PCA observations, we are able to phase connect pulse arrival times of the source within two different time intervals and obtain corresponding timing solutions. Using these pulse arrival times, we contribute to long term pulse frequency history of the source. We look for episodic correlations and anti-correlations between torque and X-ray luminosity using CGRO--BATSE X-ray flux and frequency derivative time series and find that correlation state of GX 1+4 seems to change on $sim$ 100-200 days long intervals. We estimate torque noise of the source and observe flickering noise ($f^{-1}$). We achieve to measure the longest observed timescale for a noise process among accretion powered X-ray pulsars by extending the noise estimate for a time scale ranging from 31 days to 44 years. Spectral analysis of individual RXTE-PCA observations indicates a significant correlation between iron line flux and unabsorbed X-ray flux. Pulse phase resolved spectra of the source indicate a broadening of iron line complex at the bin corresponding to the pulse minimum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا