ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?

103   0   0.0 ( 0 )
 نشر من قبل Alexandra Ecuvillon
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.

قيم البحث

اقرأ أيضاً

We present the abundance ratios [X/H] of a large set of chemical species with condensation temperatures from 75 to 1600 K in an almost complete set of 105 planet-host stars and in a volume-limited comparison sample of 88 stars without any known plane ts. The large range of different Tc covered by all the analysed elements allows us to investigate possible anomalous trends of [X/H] vs. Tc in targets with planets with respect to comparison sample stars. This can give important hints for the detection of pollution events and for the understanding of the relative contribution of the differential accretion to the average metallicity excess found in planet host stars.
The relative distribution of abundances of refractory, intermediate, and volatile elements in stars with planets can be an important tool for investigating the internal migration of a giant planet. This migration can lead to the accretion of planetes imals and the selective enrichment of the star with these elements. We report on a spectroscopic determination of the atmospheric parameters and chemical abundances of the parent stars in transiting planets CoRoT-2b and CoRoT-4b. Adding data for CoRoT-3 and CoRoT-5 from the literature, we find a flat distribution of the relative abundances as a function of their condensation temperatures. For CoRoT-2, the relatively high lithium abundance and intensity of its Li I resonance line permit us to propose an age of 120 Myr, making this stars one of the youngest stars with planets to date. We introduce a new methodology to investigate a relation between the abundances of these stars and the internal migration of their planets. By simulating the internal migration of a planet in a disk formed only by planetesimals, we are able to separate the stellar fractions of refractory (R), intermediate (I), and volatile (V) rich planetesimals accreting onto the central star. Intermediate and volatile element fractions enriching the star are similar and much larger than those of pure refractory ones. We also show that these results are highly dependent on the model adopted for the disk distribution regions in terms of R, I, and V elements and other parameters considered. We note however, that this self-enrichment mechanism is only efficient during the first 20-30 Myr or later in the lifetime of the disk when the surface convection layers of the central star for the first time attain its minimum size configuration.
We present a detailed and uniform study of oxygen abundances in 155 solar type stars, 96 of which are planet hosts and 59 of which form part of a volume-limited comparison sample with no known planets. EW measurements were carried out for the [O I] 6 300 AA line and the O I triplet, and spectral synthesis was performed for several OH lines. NLTE corrections were calculated and applied to the LTE abundance results derived from the O I 7771-5 AA triplet. Abundances from [O I], the O I triplet and near-UV OH were obtained in 103, 87 and 77 dwarfs, respectively. We present the first detailed and uniform comparison of these three oxygen indicators in a large sample of solar-type stars. There is good agreement between the [O/H] ratios from forbidden and OH lines, while the NLTE triplet shows a systematically lower abundance. We found that discrepancies between OH, [O I] and the O I triplet do not exceed 0.2 dex in most cases. We have studied abundance trends in planet host and comparison sample stars, and no obvious anomalies related to the presence of planets have been detected. All three indicators show that, on average, [O/Fe] decreases with [Fe/H] in the metallicity range -0.8<[Fe/H]<0.5. The planet host stars present an average oxygen overabundance of 0.1-0.2dex with respect to the comparison sample.
We present a detailed spectroscopic analysis of nitrogen abundances in 91 solar-type stars, 66 with and 25 without known planetary mass companions. All comparison sample stars and 28 planet hosts were analysed by spectral synthesis of the near-UV NH band at 3360 AA observed at high resolution with the VLT/UVES,while the near-IR NI 7468 AA was measured in 31 objects. These two abundance indicators are in good agreement. We found that nitrogen abundance scales with that of iron in the metallicity range -0.6 <[Fe/H]< +0.4 with the slope 1.08 pm 0.05. Our results show that the bulk of nitrogen production at high metallicities was coupled with iron. We found that the nitrogen abundance distribution in stars with exoplanets is the high [Fe/H] extension of the curve traced by the comparison sample of stars with no known planets. A comparison of our nitrogen abundances with those available in the literature shows a good agreement.
119 - S.-L. Li , D.N.C. Lin , 2008
(abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolution ary track (G sub-giant and giant stars). Preliminary observational findings suggest a deficiency of short-period hot Jupiters around the observed post MS stars, although the total fraction of them with known planets appears to increase with their mass. Here we consider the possibility that some very close- in gas giants or a population of rocky planets may have either undergone orbital decay or been engulfed by the expanding envelope of their intermediate-mass host stars. If such events occur during or shortly after those stars main sequence evolution when their convection zone remains relatively shallow, their surface metallicity can be significantly enhanced by the consumption of one or more gas giants. We show that stars with enriched veneer and lower-metallicity interior follow slightly modified evolution tracks as those with the same high surface and interior metallicity. As an example, we consider HD149026, a marginal post MS 1.3 Msun star. We suggest that its observed high (nearly twice solar) metallicity may be confined to the surface layer as a consequence of pollution by the accretion of either a planet similar to its known 2.7-day-period Saturn-mass planet, which has a 70 Mearth compact core, or a population of smaller mass planets with a comparable total amount of heavy elements. It is shown that an enhancement in surface metallicity leads to a reduction in effective temperature, in increase in radius and a net decrease in luminosity. The effects of such an enhancement are not negligible in the determinations of the planets radius based on the transit light curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا