ترغب بنشر مسار تعليمي؟ اضغط هنا

Extent of pollution in planet-bearing stars

211   0   0.0 ( 0 )
 نشر من قبل Shulin Li
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) Search for planets around main-sequence (MS) stars more massive than the Sun is hindered by their hot and rapidly spinning atmospheres. This obstacle has been sidestepped by radial-velocity surveys of those stars on their post-MS evolutionary track (G sub-giant and giant stars). Preliminary observational findings suggest a deficiency of short-period hot Jupiters around the observed post MS stars, although the total fraction of them with known planets appears to increase with their mass. Here we consider the possibility that some very close- in gas giants or a population of rocky planets may have either undergone orbital decay or been engulfed by the expanding envelope of their intermediate-mass host stars. If such events occur during or shortly after those stars main sequence evolution when their convection zone remains relatively shallow, their surface metallicity can be significantly enhanced by the consumption of one or more gas giants. We show that stars with enriched veneer and lower-metallicity interior follow slightly modified evolution tracks as those with the same high surface and interior metallicity. As an example, we consider HD149026, a marginal post MS 1.3 Msun star. We suggest that its observed high (nearly twice solar) metallicity may be confined to the surface layer as a consequence of pollution by the accretion of either a planet similar to its known 2.7-day-period Saturn-mass planet, which has a 70 Mearth compact core, or a population of smaller mass planets with a comparable total amount of heavy elements. It is shown that an enhancement in surface metallicity leads to a reduction in effective temperature, in increase in radius and a net decrease in luminosity. The effects of such an enhancement are not negligible in the determinations of the planets radius based on the transit light curves.



قيم البحث

اقرأ أيضاً

We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for m any volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.
73 - J. Farihi 2016
Circumstellar disks of planetary debris are now known or suspected to closely orbit hundreds of white dwarf stars. To date, both data and theory support disks that are entirely contained within the preceding giant stellar radii, and hence must have b een produced during the white dwarf phase. This picture is strengthened by the signature of material falling onto the pristine stellar surfaces; disks are always detected together with atmospheric heavy elements. The physical link between this debris and the white dwarf host abundances enables unique insight into the bulk chemistry of extrasolar planetary systems via their remnants. This review summarizes the body of evidence supporting dynamically active planetary systems at a large fraction of all white dwarfs, the remnants of first generation, main-sequence planetary systems, and hence provide insight into initial conditions as well as long-term dynamics and evolution.
We present observations of disc-bearing stars in Upper Scorpius (US) and Upper Centaurus-Lupus (UCL) with moderate resolution spectroscopy in order to determine the influence of multiplicity on disc persistence after ~5-20 Myr. Discs were identified using infra-red (IR) excess from the Wide-field Infra-red Survey Explorer (WISE) survey. Our survey consists of 55 US members and 28 UCL members, using spatial and kinematic information to assign a probability of membership. Spectra are gathered from the ANU 2.3m telescope using the Wide Field Spectrograph (WiFeS) to detect radial velocity variations that indicate the presence of a companion. We identify 2 double-lined spectroscopic binaries, both of which have strong IR excess. We find the binary fraction of disc-bearing stars in US and UCL for periods up to 20 years to be $0.06^{0.07}_{0.02}$ and $0.13^{0.06}_{0.03}$ respectively. Based on the multiplicity of field stars, we obtain an expected binary fraction of $0.12^{0.02}_{0.01}$. The determined binary fractions for disc-bearing stars does not vary significantly from the field, suggesting that the overall lifetime of discs may not differ between single and binary star systems.
Asteroid material is detected in white dwarfs (WDs) as atmospheric pollution by metals, in the form of gas/dust discs, or in photometric transits. Within the current paradigm, minor bodies need to be scattered, most likely by planets, into highly ecc entric orbits where the material gets disrupted by tidal forces and then accreted onto the star. This can occur through a planet-planet scattering process triggered by the stellar mass loss during the post main-sequence evolution of planetary systems. So far, studies of the $N$-body dynamics of this process have used artificial planetary system architectures built ad hoc. In this work, we attempt to go a step further and study the dynamical instability provided by more restrictive systems, that, at the same time allow us an exploration of a wider parameter space: the hundreds of multiple planetary systems found around main-sequence (MS) stars. We find that most of our simulated systems remain stable during the MS, Red and Asymptotic Giant Branch and for several Gyr into the WD phases of the host star. Overall, only $approx$ 2.3$%$ of the simulated systems lose a planet on the WD as a result of dynamical instability. If the instabilities take place during the WD phase most of them result in planet ejections with just 5 planetary configurations ending as a collision of a planet with the WD. Finally 3.2$%$ of the simulated systems experience some form of orbital scattering or orbit crossing that could contribute to the pollution at a sustained rate if planetesimals are present in the same system.
With the Infrared Space Observatory, we conducted 3x3-pixel imaging photometry of twelve luminosity class III stars, which were previously presumed to have dust particles around them, at far infrared wavelengths (60 and 90 um). Eleven out of twelve t argets show a peak of excess (above photosphere) far infrared emission at the location of the star, implying that the dust particles are truly associated with stars. To estimate the size of the excess emission source, the flux ratio of center to boundary pixels of the 3x3 array was examined. The radius of the dust emission is found to be ~3000 to ~10000 AU for a thin shell distribution, and ~5000 to ~25000 AU for a uniform distribution. We consider three models for the origin of the dust: disintegration of comets, sporadic dust ejection from the star, and emission from nearby interstellar cirrus. The data seem to rule out the first model (as far as the Kuiper--belt like particles are assumed to be large blackbody grains), but do not enable us to choose between the other two models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا