ترغب بنشر مسار تعليمي؟ اضغط هنا

Nitrogen abundances in Planet-harbouring stars

62   0   0.0 ( 0 )
 نشر من قبل Alexandra Ecuvillon
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed spectroscopic analysis of nitrogen abundances in 91 solar-type stars, 66 with and 25 without known planetary mass companions. All comparison sample stars and 28 planet hosts were analysed by spectral synthesis of the near-UV NH band at 3360 AA observed at high resolution with the VLT/UVES,while the near-IR NI 7468 AA was measured in 31 objects. These two abundance indicators are in good agreement. We found that nitrogen abundance scales with that of iron in the metallicity range -0.6 <[Fe/H]< +0.4 with the slope 1.08 pm 0.05. Our results show that the bulk of nitrogen production at high metallicities was coupled with iron. We found that the nitrogen abundance distribution in stars with exoplanets is the high [Fe/H] extension of the curve traced by the comparison sample of stars with no known planets. A comparison of our nitrogen abundances with those available in the literature shows a good agreement.



قيم البحث

اقرأ أيضاً

We present a detailed and uniform study of C, S, Zn and Cu abundances in a large set of planet host stars, as well as in a homogeneous comparison sample of solar-type dwarfs with no known planetary-mass companions. Carbon abundances were derived by { EW} measurement of two C I optical lines, while spectral syntheses were performed for S, Zn and Cu. We investigated possible differences in the behaviours of the volatiles C, S and Zn and in the refractory Cu in targets with and without known planets in order to check possible anomalies due to the presence of planets. We found that the abundance distributions in stars with exoplanets are the high [Fe/H] extensions of the trends traced by the comparison sample. All volatile elements we studied show [X/Fe] trends decreasing with [Fe/H] in the metallicity range -0.8<[Fe/H]<0.5, with significantly negative slopes of -0.39+-0.04 and -0.35+-0.04 for C and S, respectively. A comparison of our abundances with those available in the literature shows good agreement in most cases.
We present a detailed and uniform study of oxygen abundances in 155 solar type stars, 96 of which are planet hosts and 59 of which form part of a volume-limited comparison sample with no known planets. EW measurements were carried out for the [O I] 6 300 AA line and the O I triplet, and spectral synthesis was performed for several OH lines. NLTE corrections were calculated and applied to the LTE abundance results derived from the O I 7771-5 AA triplet. Abundances from [O I], the O I triplet and near-UV OH were obtained in 103, 87 and 77 dwarfs, respectively. We present the first detailed and uniform comparison of these three oxygen indicators in a large sample of solar-type stars. There is good agreement between the [O/H] ratios from forbidden and OH lines, while the NLTE triplet shows a systematically lower abundance. We found that discrepancies between OH, [O I] and the O I triplet do not exceed 0.2 dex in most cases. We have studied abundance trends in planet host and comparison sample stars, and no obvious anomalies related to the presence of planets have been detected. All three indicators show that, on average, [O/Fe] decreases with [Fe/H] in the metallicity range -0.8<[Fe/H]<0.5. The planet host stars present an average oxygen overabundance of 0.1-0.2dex with respect to the comparison sample.
We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for m any volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.
The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.
159 - F. Martins , G.A. Wade 2011
We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star tau Sco. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the trans port of elements in stellar interiors. We conduct a quantitative spectroscopic analysis of the sample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Theta1 Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results should be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا