ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical nova explosions

67   0   0.0 ( 0 )
 نشر من قبل Margarida Hernanz
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Margarita Hernanz




اسأل ChatGPT حول البحث

A review of the present status of nova modeling is made, with a special emphasis on some specific aspects. What are the main nucleosynthetic products of the explosion and how do they depend on the white dwarf properties (e.g. mass, chemical composition: CO or ONe)? Whats the imprint of nova nucleosynthesis on meteoritic presolar grains? How can gamma rays, if observed with present or future instruments onboard satellites, constrain nova models through their nucleosynthesis? What have we learned about the turnoff of classical novae from observation with past and present X-ray observatories? And last but not least, what are the most critical issues concerning nova modeling (e.g. ejected masses, mixing mechanism between core and envelope)?



قيم البحث

اقرأ أيضاً

Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in binary systems. The material piles up under degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope heats the material up to peak temperatures about 100 - 400 MK. During these events, about 10-3 - 10-7 Msun, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, Al) are ejected into the interstellar medium. To account for the gross observational properties of classical novae (in particular, the large concentrations of metals spectroscopically inferred in the ejecta), models require mixing between the (solar-like) material transferred from the secondary and the outermost layers (CO- or ONe-rich) of the underlying white dwarf. Recent multidimensional simulations have demonstrated that Kelvin-Helmholtz instabilities can naturally produce self-enrichment of the accreted envelope with material from the underlying white dwarf at levels that agree with observations. However, the feasibility of this mechanism has been explored in the framework of CO white dwarfs, while mixing with different substrates still needs to be properly addressed. Three-dimensional simulations of mixing at the core-envelope interface during nova outbursts have been performed with the multidimensional code FLASH, for two types of substrates: CO- and ONe-rich. We show that the presence of an ONe-rich substrate, as in neon novae, yields larger metallicity enhancements in the ejecta, compared to CO,rich substrates (i.e., non-neon novae). A number of requirements and constraints for such 3-D simulations (e.g., minimum resolution, size of the computational domain) are also outlined.
107 - M. J. Darnley 2008
We are currently involved in a multifaceted campaign to study extragalactic classical novae in the Local Group and beyond. Here we report on-going results from the exploitation of the POINT-AGAPE M31 dataset; initial results from our Local Group imag ing, and spectroscopic CNe follow-up campaign and introduce the Liverpool Extragalactic Nova Survey.
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists ut ilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14-175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
Nova outbursts play an important role in the chemical evolution of galaxies, especially they are the main source of synthetic $^{13}rm C$, $^{15}rm N$, $^{17}rm O$ and some radioactive isotopes like $^{22}rm Na$ and $^{26}rm Al$. The enrichment of He in nova ejecta indicates that the accreted material may mix with the He-shell (He-mixing). The purpose of this work is to investigate how the He-mixing affects the nova outbursts in a systematic way. We evolved a series of accreting WD models, and found that the mass fraction of H and He in nova ejecta can be influenced by different He-mixing fractions significantly. We also found that both the nova cycle duration and ejected mass increase with the He-mixing fractions. Meanwhile, the nuclear energy production from $p$-$p$ chains decreases with the He-mixing fraction during the nova outbursts, whereas the CNO-cycle increases. The present work can reproduce the chemical abundances in the ejecta of some novae, such as GQ Mus, ASASSN-18fv, HR Del, T Aur and V443 Sct. This implies that the He-mixing process cannot be neglected when studying nova outbursts. This study also develops a He-mixing meter (i.e. $rm He/H$) that can be used to estimate the He-mixing fraction in classical nova systems.
The origin of lithium (Li) and its production process have long been an unsettled question in cosmology and astrophysics. Candidates environments of Li production events or sites suggested by previous studies include big bang nucleosynthesis, interac tions of energetic cosmic rays with interstellar matter, evolved low mass stars, novae, and supernova explosions. Chemical evolution models and observed stellar Li abundances suggest that at least half of the present Li abundance may have been produced in red giants, asymptotic giant branch (AGB) stars, and novae. However, no direct evidence for the supply of Li from stellar objects to the Galactic medium has yet been found. Here we report on the detection of highly blue-shifted resonance lines of the singly ionized radioactive isotope of beryllium, $^{7}$Be, in the near ultraviolet (UV) spectra of the classical nova V339 Del (Nova Delphini 2013). Spectra were obtained 38 to 48 days after the explosion. $^{7}$Be decays to form $^{7}$Li within a short time (half-life 53.22 days). The spectroscopic detection of this fragile isotope implies that it has been created during the nova explosion via the reaction $^{3}mbox{He}(alpha,gamma)^{7}mbox{Be}$, and supports the theoretical prediction that a significant amount of $^{7}$Li could be produced in classical nova explosions. This finding opens a new way to explore $^{7}$Li production in classical novae and provides a clue to the mystery of the Galactic evolution of lithium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا